ENGINEERING 11 PHYSICAL SYSTEMS ANALYSIS I

EXAM 3, part 2 CLOSED BOOK, CLOSED NOTES, CLOSED MOUTHS

Due at 5PM on Friday, December 6, 2002

1. Find the impulse response of the circuit below. Let R = L = C = 1 (with appropriate units). The source is a current $i_s(t) = I_0 \delta(t)$. Find $v_c(t)$ for t > 0. Please also explain which other element(s) will experience the impulse in current passing through it/them.

$$L_{1}(6^{-}) = N_{c}(0^{-}) = 0$$

December 4, 2002 page 2/2

EXAM 3, part 2

2. Find the complete response of the circuit shown below. A switch closes at time t = 0 to connect the source $v_s(t) = V_0\sqrt{2} * \cos(t)$. Let R = L = C = 1 (with appropriate units).

LAM

ENGINEERING 11 PHYSICAL SYSTEMS ANALYSIS I

December 4, 2002 page 1/2

EXAM 3, part 2 CLOSED BOOK, CLOSED NOTES, CLOSED MOUTHS

Due at 5PM on Friday, December 6, 2002

1. Find the impulse response of the circuit below. Let R = L = C = 1 (with appropriate units). The source is a current $i_s(t) = I_0\delta(t)$. Find $v_c(t)$ for t > 0. Please also explain which other element(s) will experience the impulse in current passing through it/them. $J'_L(o^-) = \mathcal{N}_C(o^-) = O$

R wi service un source is inveloced.
R wi service un source is inveloced.

$$= r(I_2 - I_0S(H)) - L \frac{dI_2}{dL} - \frac{1}{c} \int I_2 dL = 0$$

$$= r(I_2 - I_0S(H)) - L \frac{dI_2}{dL} - \frac{1}{c} \int I_2 dL = 0$$

$$= r(I_2 - I_0S(H)) - L \frac{dI_2}{dL} - \frac{1}{c} \int I_2 dL = 0$$

$$= r(I_2 - I_0S(H)) - L \frac{dI_2}{dL} - \frac{1}{c} \int I_2 dL = 0$$

$$= r(I_2 - I_0S(H)) - L \frac{dI_2}{dL} + \frac{1}{Lc} \int I_2 dL = \frac{RI_0}{L} S(H)$$

$$= r(I_2 - I_0S(H)) - L \frac{dI_2}{dL} + \frac{R}{Lc} \int I_2 dL = \frac{RI_0}{L} S(H)$$
Notwood: $s^2 + \frac{R}{L} + \frac{1}{Lc} = s^2 + s + 1 = 0$

$$= s = -\frac{1}{2} \pm \sqrt{\frac{1}{L}} - 1 = -\frac{1}{2} \pm \frac{1}{2} \frac{I_2}{Z}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{RI_0}{L} = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = 0$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

$$= r(I_2 - I_1 + \frac{R}{L}) \int I_2(0^+) = \frac{R}{L}$$

ENGINEERING 11 PHYSICAL SYSTEMS ANALYSIS I

December 4, 2002 page 2/2

EXAM 3, part 2

2. Find the complete response of the circuit shown below. A switch closes at time t = 0 to connect the source $v_s(t) = V_0\sqrt{2} * \cos(t)$. Let R = L = C = 1 (with appropriate units). $\lambda'_L (o^-) = \mathcal{O}_C (o^-) = O$

Forced:
$$V_{c} = \frac{2c}{R+2e} V_{L} = \frac{2c}{R+2e} \frac{2c_{LC}}{R+2e_{L}} V_{S}$$

 $= \frac{V_{c}}{R+2e} \frac{5(S+1)}{S^{2}+S+1} = \frac{1}{S^{2}+S+1} \frac{S(S+1)}{S^{2}+S+1} = \frac{1}{S^{2}+S+1} \frac{S(S+1)}{S^{2}+S+1} = \frac{1}{S^{2}+2S+1} = \frac{1}{S^{2}+2S$

$$\frac{let s+j\omega}{(\omega=1)} \quad \frac{V_c}{V_s} = \frac{1}{1-2+j^2} = \frac{1}{\sqrt{5}} \frac{1}{\frac{116.56}{1-2+j^2}} = 0.441 \left[\frac{-26.56}{26.56}\right]$$

LAM