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The key observation is that the given input can be represented as a linear
combination of iy and multiples of iy shifted in time. The process is illus-
trated in Fig. 5.7; the sum of the three functions shown is 7. It is obvious

from the graphs of i and #; that
i = ig + 3%1(lo) — 2T3(lo)
Now call v the zero-state response due to #; that is,
v = Zo(d)
= Zolio + 3T1(to) — 293(i0)]

By the linearity of the zero-state response we get
v = Zo(lo) + 3%Z[T1(i0)] — 2%o[Ta(i0)]

and by the time-invariance property

v = Zo(lo) + 3T1[Zo(io)] — 2Ts[Za(i0)]

Since

vo = Zo(io)

v = Vp + 391(o) — ZJ3(vo)

or

(1) = vo(?) + 3vo(t — 1) — 2uo(t — 3) fort >0

Remark The method used to calculate v in terms of vy is usually referred to as the

superposition method. It is fundamental to realize that we have to invoke
the time-invariance property and the fact that the zero-state response is a

linear function of the input. :

io ﬁwm:«.& -2T3(io)

Fig. 5.7 Decomposition of i in terms of shifted pulses.
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(a) A simple linear RC circuit; (b) time-varying resis-
wr char acic ”a.pm..:

Consider the familiar linear time-i i ircui
Conside -invariant RC cir in Fi :
Is 1s 1ts input, and v is its response. cultshown in 20

a. Calculate and sketch the zero-state response to the mo:oium inputs:
1 0<r<05 3 0<1<05

' 0 05« r 2

—0.5 2125

0 05 <t 0 25<¢

b. Suppose now that the resistor is ti i
. : ° time-varying but still linear. Let i
MMmMMMM.-HnM»MoEM M“uonou om. Mﬂn as shown in Fig. 5.8b. Suppose we swnﬂw
. sponse of this circuit to the input i;; m i
Ea,Eom discussed previously? If not, state E.mew %5..@ P

Al) = is(f) =

Impulse Response

More precisely, h() is the re i
re | ely, s ¢ Sponse at time 7 of the circuit provided
Mww_hm -_HWE._« the unit impulse § and (2) it is in the zero ._.Hﬁwh.cmn Maon_.wmw
pplication of the impulse. For convenience in later formulations we




First method

(6.1)

(62)

Fig.
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shall define 4 to be zero for # < 0. Since the calculation of impulse re-
sponse is of great importance to electrical engineers, we shall present three
methods.

We approximate the impulse by the pulse function p,. In order to obtain
a first acquaintance with the impulse response, let us calculate the impulse
response of the parallel RC circuit shown in Fig. 6.1. The input to the cir-
cuit is the current source i,, and the response is the output voltage v. Since
the impulse response is defined to be the zero-state response to 8, the im-
pulse response is the solution of the differential equation

a —
OM + Gv = §(1)
with
v0—) =0 .
where the symbol 0— designates the time immediately before ¢ = 0.
We have to distinguish between 0— and 0+ because of the presence
of the impulse on the right-hand side of (6.1). At time ¢ = 0 an infinitely

large rurrant anac thronoh tha it For om 4 1 imtawral AF oo

TESSeSs DY TS mesvwiis mw VA b AUA Gds aiklaalil beoliiioes A1AveA 1Ak U Mbde

. The situation is analogous to the golf ball sitting on the tee and being hit by

the club at ¢ = 0; it is obviously of great importance to distinguish be-
tween the velocity of the ball at 0— just prior to being hit, and its velocity
at 0+ just after being hit.

Equation (6.2) states that the circuit is in the zero state just prior to the
application of the input. In order to solve (6.1) we run into some diffi-
culties since, strictly speaking, 8 is nor a function. Therefore, the solution
will be obtained by approximating unit impulse 8 by the pulse function
Pas computing the resulting solution, and then letting A — 0. Recall that
Pa is defined by

0 fort <0
Pad) = W for0 < 1< A
0 for A<r
and it is plotted in Fig. 6.2. The first step is to solve for h,, the zero-state

'—1
o
w‘

mmm \—; 3

Linear time-invariant RC circuit.

I e +

Fig. 6.2

(6.3a)

(6.3b)

(6.4a)

(6.45)
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Pulse function p,( - ).

response of the RC circuit to p,, where A is chosen to be much smaller than
the time constant RC. The waveform A, is the solution of

dh, 1, 1
C +gh=7 0<r<CA
nﬁf%&uc t>A

with h,(U) = 0. Clearly, 1/4 is 4 constany; hence ftom (0.5u)

ha() = smc — B0 0<t<A

and it is the zero-state response due to a step (1/A)u(f). From (6.3b), A,
for £ > A is the zero-input response that starts from A,(A) at 7 = A; thus
ha@) = hy(A)e@—a/BC 1> A

The total response h, from (6.4a) and (6.4b) is shown on Fig. 6.3a. From
(6.4a) . :
hy(8) = %c — e/E0)

Since A is much smaller than RC, using

2
ﬂ.u~|a+m_;|.wm+.:
we obtain
_R[ A _ 1 |b.|v~
‘;@:p?n \re) * _

A 1(A), ...

=41 -wlze) + -]

Similarly, from (6.44) for A very small and 0 < 7 < A, expanding the expo-
nential function, we obtain



Chap. 4 First-order Circuits 144
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hy(8) "~ Time constant RC

hy

(a)

(6)
Fig. 6.3  (a) Zero-state response of p,; (b) the responses as A — 0.

=12, .
ht) = =5 + 0<r<A
Note that the slope of the curve k, over (0,4) is 1/CA. This slope is very
large since A is small. As A —s 0, the curve k, over (0,A) becomes steeper
and steeper, and h,(A) — 1/C. In the limit, &, jumps from 0 to ~\nn."9n
instant f = 0. For 7 > 0, we obtain, from (6.4b),
ha(l) > evae
As A approaches zero, h, approaches the impulse response k as shown in
Fig. 6.3b. Recalling that by convention we set A(f) = 0 for 7 < 0, we can
therefore write

65 h) = ..SWA._E for all 1

The impulse response A is shown in Fig. 6.4.
The above calculation of & calls for two remarks.
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Q=

Time constant = RC

o

Fig. 6.4  Impulse response of the RC circuit of Fig. 6.1.

Remarks 1. Our purpose in calculating the impulse response in this manner has
been to exhibit the fact that it is a straightforward procedure; it re-
quires only the approximation of & by a suitable pulse, here p,. The
only requirements that p, must satisfy are that it be zero outside the
interval (0,A) and the area under p, be equal to 1; that is, ,

Jo pyai=1

It is a fact that the shape of p, is irrelevant; therefore, we choose a
shape that requires the least amount of work. We might very well
have chosen a triangular pulse as shown in Fig. 6.5. Observe that the
maximum amplitude of the triangular pulse is now 2/A; this is re-
quired in order that the area under the pulse be unity for all A > 0.
2. Since 8(r) = 0for ¢ > 0 (that is, the input is identically zero for ¢ > 0),
it follows that the impulse response A(#) is, for # > 0, identical to a
particular zero-input response. We shall use this fact later.

Relation 'We wish now to establish a very important relation between the step re-
between  sponse and the impulse response of a linear time-invariant circuit. More
impulse b recisely we wish to show that the following is true:

step response  The impulse response of a linear time-invariant circuit is the time derivative

of its step response.

Fig. 6.5 A triangular pulse can also be used to approximate the impulse.
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Symbolically, -

di

== o equivalently  4(1) = ._.|n L ) ar

We prove this important statemen imati
: t by approximating the impuls :
pulse function p,. Let A, be the zero-state response Sm the WMW.W .PM M—W”Wn £

Fiy & (pa)

As A— 0, the pulse function
8 P. approaches 8, the unit impulse, and
the zero-state response to the pulse input, approaches Ew E?leu wm.

sponse h. Now consider ..
g T sl

_ 1
pa= 310 — ue - O] = Fu + - G

By the linearity of the zero-state response, we have

Zo(ps) = R.AWz = .H.v_ .m.bcv

1 =
= M&vﬂﬂd + qﬂ&c—\oﬂw‘nv

Since the circuit is linear and time-invari
operator commute; EE.ME& time-invariant, the % operator and the shift

Py

1
A

b=
>

1
A A

6.6

0]

) (c)

The pulse function p, in (@) can be considered as the sum of a step function in (b) and 2

delayed step function in (¢).

(6.8)

Remark

. Second method
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Fo(Tad) = TaZo(t)
Let us denote the step response by
4 £ %)
Equations (6.7) and (6.8) can be combined to yield successively
By 2 Zo(pa) = w;l.wml

() = .wLS — w&c —A)

40 — M_Q =8  foralls

Now with A — 0, the right-hand side becomes the derivative; hence
i — ) = 98
tim k) = HO =G

The two equations in (6.6) do not hold for linear fime-varying Circuits; this
should be expected since time invariance is used in a key step of the deriva-

tion. Thus, for near rime-varying Gircaits the time derivative of the step

response is not the impulse response.
We use h = d4/dt. Agan considering the parallel RC circuit of Fig. 6.1,
innonmhﬁﬁ._ﬁ.#awnawoﬁnuw%qgg :
4(0) = u(HR(A — € (L/ROY)

If we consider the right-hand side as a product of two functions and use
the rule of differentiation (w) = u'v + w’, we obtain the impulse
response ‘

ht) = BOR(L — € 0/EN) 4 L ulfy /Rt

.—.rnmmﬁgwannmn&wuﬂogﬁomon Qmo.msu..o, mbnmolﬂo.
1 — e WE = 0 Therefore, )

H() = — e oBo*
This result, of course, checks with the previously obtained result in (6.5).

We use the differential equation directly. We propose to show that h de-
fined by

hi) = w w(iyevre  forallt

+As a rule replace right away expressions like f(}5(1) by f(0)8(2), and expressions like f(1)8(f — ) by f{ns(t — 7).

e e



(6.9)

(6.10)

(6.11)

(6.12)

Fig. 6.7
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is the solution to the differential equation

d
CZ0 +Go=3

In order not to prejudice the case, let us call y the solution to (6.9).
Thus, we propose to show that y = h. Since 8(t) = 0fort> 0andyisthe
solution of (6.9), we must have

PO =yO0+)e B¢ fort>0

This is shown in Fig. 6.7a. Since 8(f) = Ofors < 0 and the circuit is in the
zero state at time 0—, we must also have

¥ =0 fort <0
This is shown in Fig. 6.75. Combining (6.10) and (6.11), we conclude that
YO = u(@y(0+)e B forallt

It remains to calculate y(0+), that is, the magnitude of the jump in the
curve y at f = 0. In order to do this we use the known fact that

with p(0—) = 0

A — %
Vs &

MSB (6.12) and by considering the right-hand side as a product of func-
tions, we obtain

IWW@ = S(p(0+)e R 4 :Sio+u|.m.m_..nl\bn

In the first term, since 8(7) is zero everywhere except at ¢ = 0, we may set
t to zero in the factor of §(z); thus

- =1
ms = 80p0+) + u(yO+) ¢ = R

(a) (®)
Impulse respanse for the parallel RC circuit. (a) y(1) for £ > 0; (5) ) fort < 0.

Remark

(6.13)
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Substituting in (6.9), we obtain
8(CYO0+) — u(O)p(0+)Ge VR 4 Gu(i)p(0+)et/2C = §(f)

After cancellation the only term that remains on the left-hand side is
Cy(0+)8(1); since it must balance the term 8(?) in the right-hand side, we
obtain y(0+)C = 1; equivalently,

yo+) = .m,n

Inserting this value of y(0+) into (6.12), we conclude that the solution of
(6.9) is actually A, the impulse response calculated previously.

We have just shown that the solution of the differential equation
n%@ +Go=8 witho{D=)=0
for ¢ > 0 is identical with the solution of

d B . _ 1
CL@+G=0 withu0+) =

Fl

for t > 0. This can be seen by integrating both sides of (6.9) from
t=0— tot= 0+ to obtain

Co0+) — Co0—) + G [ ) =1
Since v is finite, G [+ v(¢) d¢’ = 0, and since v(0—) = 0, we obtain

o0+) = ¢

In Eq. (6.13) the effect of the impulse at = 0 has been taken care of by the
initial condition at ¢ = 0+.

Step and Impulse Responses for Simple Circuits

Let us calculate the impulse response and the step response of the RL cir-
cuit shown in Fig. 7.1. The series connection of the linear time-invariant
resistor and inductor is driven by a voltage source. As far as the impulse
response is concerned, the differential equation for the current i is

di | o _
LE +Ri=3

If we confine our attention to the values of ¢ > 0, this problem is equiva-

i(0-) =0




. |
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2a

(12)

(73)

(74)
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the current becomes practically constant. Thus, for large 7, di/dt = 0; that

; h(t
, v % is, the voltage across the inductor is zero, and all the voltage of the source
1 hlt) = |H=E e-t/T r=L is across the resistor. Therefore, the currentis approximately 1/R. Inthe
v, R | L R limit we reach what is called the steady state and i = 1/R. We conclude
that the inductor behaves as a short circuit in the steady state for a step-
voltage input.
() 0 t Example 2 Consider the circuit in Fig. 7.2, where the series connection of a linear
®) time-invariant resistor R and a capacitor C is driven by a voltage source.
a(t) The current through the resistor is the response of interest, and the prob-
lem is to find the impulse and step responses. The equation for the current
A i is given by writing KVL for the loop; thus
R
1 7% ;
(75 = ['i()dt + Ri(r) = vyt
Slope Ihul —_ c ,_. 0 ’
Let us use the charge on the capacitor as the variable; then (7.5) becomes
t
0 4, r%
R =
@ (16 &+RE=u)
NM M.m.m:ﬁumm.:mm.n_ 1Nt AL wireuil, v is e inpul and £ s the response; (o) Impuise response; C s(t) o) = s.%:s e-t/T
q
lent to that of the same circuit with no voltage source but with the initial :
condition i(0+) = 1/L; that is, for > 0, v
s
di - g _ 1 2 &
L +Ri=0 i0+) =+ | ,
The solution is
; 1 (a) (®)
i(1) = M) = — u(f)e- &Lt
L : h(t)
The step response can be obtained either from integration of (7.3) or
directly from the differential equation 1
R
4() = W:Eﬁ — e (R/D))
t
The physical explanation of the step response of the series RL circuit is '
now given. As the step of voltage is applied to the circuit, that is, at 0+
the current in the circuit remains zero because, as we noted earlier, th
current through an inductor cannot change instantaneously unless there s | - 1
an infinitely large voltage across it. Since the current is zero, the voltage ; " R%C

across the resistor must be zero. Therefore, at 0+ all the voltage of th
voltage source appears across the inductor; in fact m = 1/L. Astime
0+

increases, the current increases monotonically, and after a very long time

(c)
Fig. 7.2 (a) Linear time-invariant RC circuit; v, is the input and  is the response; (b) step response;
(c) impulse response.

T




r4

Table 4.1 Step and Impulse Responses for Simple Linear Time-invariant Circuits

iinput) response) 50 .
; + -t/RC _
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Table 4.1 Step and Impulse Responses for Simple Linear Time-invariant Circuits (Continued)

e,(input) i(response) A(0) h(n)
o -(R/LX i ;
1 ﬁ(l - € )u(ﬂ % -lfe (R/LY u(t)
R
- —t o d
. - 1 1 ~t/RC
ili' '}i‘ t/RC 1) 7 8 - Ert u:t)
0
—— ____L_
0 R2C
i i 1
=u(t) + C ot
e c 3R b R L
> & B 5(2) + C 6 (t)
t ¢
i=C at +%€s 0 0
. L i 1 1
o e 7. i: a 7 00 + pul®
B t= g Thet)e : :
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Since we have to find the step and impulse responses, the initial condition
is g(0—) = 0. Ifp, is a unit step, (7.6) gives

gt) = u(H)C(1 — )

and by differentiation, the step response for the current is
i) =40) = wﬂ:@x;q

If vy is a unit impulse, (7.6) gives

4u(t) = & w0

and, by differentiation, the impulse response for the current is

i(t) = h(t) = Mwms - NM o u(f)e/RC

We observe that in response to a step, the current is discontinuous at
t = 0;i,(0+) = 1/R as we expect, since at / = 0 there is no charge (hence
- no voltage) on the capacitor. In response to an impulse, the current in-
cludes an impulse of value 1/R, and, for ¢ > 0, the capacitor discharges

47..3...“7. the racictar

The step and impulse responses for simple first-order linear time-invar-
iant circuits are tabulated in Table 4.1.

Sec. 8 Time-varying Circuits and Nonlinear Circuits 155

which means that the zero-state response (starting in the zero state at
time zero) to the shifted input is equal to the shift of the zero-state re-
sponse (starting also in the zero state at time zero) to the original input.

2. The impulse response is the derivative of the step response.

For time-varying circuits and nonlinear circuits the analysis problem is
in general difficult. Furthermore there exists no general method of anal-
ysis except numerical integration of the differential equations. Conse-
quently, we shall give only simple examples to point out techniques that
may be useful in simple cases. Our main emphasis is, however, to demon-
strate certain properties of the solutions.

Time-varying Circuits and Nonlinear Circuits

Up to this point we have analyzed almost exclusively linear time-invariant
circuits. We have studied the implications of the linearity and of the time
invariance of element characteristics as far as the relation between input
and output is concerned. In this section we shall first summarize the main
implications of linearity and of time invariance of element characteristics.
Next we shall consider examples of circuits with nonlinear and of time-
varying elements to demonstrate that without linearity and time invar-
iance these main implications are no longer true.

In our study of first-order circuits we have seen that if the circuits are
linear (time-invariant or time-varying), then

1. The zero-input response is a linear function of the initial state. >
2. The zero-state response is a linear function of the input.

3. The complete response is the sum of the zero-input response and of the
zero-state response.

We have also seen that if the circuit is /inear and time-invariant, then

L %50 = T%H@H] 720

Example 1

Solution

Fig. 8.1

Consider the parallel RC circuit of Fig. 8.1, where the capacitor is linear
and time-invariant with C = 1 farad and the initial voltage at 7 = 0 is
1 volt. The zero-input responses are to be determined for the following
types of resistor:

a. A linear time-invariant resistor with R = 1 ohm

b. A linear time-varying resistor with R(f) = 1/(1 + 0.5 cos f) ohm

A monliicar liwe-iuvaliani resistor having a characteristic i = Ug?

€3

a. The solution has been discussed before and is of the form
vi)=€¢t 1>0
b. The differential equation is given by

mw.+c+o.u8m%uo 1> 0

and
wW0) = 1
The equation can be put in the following form
& _ (1405 cos f)d
v

Integrating the right-hand side from zero to ¢ and the left-hand side from
v(0) = 1 to u(r), we obtain

. Af+
v(0) =1 7= 1F SvR=v

Illustration of the zero-input responses of a simple RC circuit.




Fig. 2.4

Exercise

(2.24)
(2.25)
(2.26)

v, v,
(e c L % -at
velt) =\[7 oo € “sin wyt
1 y ¢ .
mmpoﬁm
Envelope L 2 m;%
l\ (o E&

-—

L slope
c Wqa Wy

(a) ®)

Step responses for the capacitor voltage of the parallel RLC circuit.

_.annEnm.wa&EnnﬁnoﬁéaoeFcoEEoHomwﬁo:an&anﬁEwnu
a long time the circuit reaches a steady state; that is, .
iy _ 0 d?iy _

dr o
Hence, according to Eq. (2.2), all current from the source goes through the
inductor. Therefore, the voltage across the parallel circuit is zero because
the current in the resistor is zero. At? = oo the inductor acts as a short cir-
cut to a constant current source. The currents through the capacitor, re-
sistor, and inductor are plotted in Fig. 2.5 for the overdamped case

<%

For the parallel RLC circuit with R = 1 ohm, C = 1 farad, and L = 1
henry, determine the currents in the inductor, the capacitor, and the
resistor as a result of an input step of current of 1 amp. The circuit is in
the zero state at ¢t = 0—. Plot the waveforms.

We now calculate the _EvEmn response for the parallel RLC circuit. By
definition, the input is a unit impulse, and the circuit is in the zero state at
0—; hence, the impulse response iz, is the solution of

d2iy, dip’

LC ar +N.Q|&~.|+-.&"WS
if0—-)=0

dig,

M«|mol.v”c

Since the computation and physical understanding of the impulse re-
sponse are of great importance in circuit theory, we shall again present
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First method

@27

Fig. 2.5
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several methods and interpretations, treating only the underdamped case,
that is, the circuit with complex natural frequencies.

We use the differential equation directly. Since the impulse function 8()
is identically zero for t > 0, we can consider the impulse response as a
zero-input response starting at 1 = 0+. The impulse at # = 0 creates an
initial condition at ¢ = 0+, and the impulse response for # > 0 is essen-
tially the zero-input response due to that initial condition. The problem
then is to determine this initial condition. Let us integrate both sides of
Eq. (224) from t = 0— to ¢t = 04. We obtain

269 04) - L% 0-) + LG0+) - LGis0-)

+ iy ar =1

Zero slope

Plots of ig, ig, and iy due to a step-
current input for the parallel RLC
circuit (overdamped case, @ < %).




(2.28)

(2.29)

(2.30)

(2.31)

2.32)

Remark
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where the right-hand side is obtained by using the fact that

Jolsayar =1

We know that iy, cannot jump at 7 = 0, or equivalently, that iz, is a con-
tinuous function; that is,

[ iy dr = 0 and i(0+) = ix(0—)

0—

Ifit were not continuous, dir/dt would contain an impulse, d %ir/dr* would
contain a doublet, and (2.24) could never be satisfied since there is no
doublet on the right-hand side. From (2.27) we obtain

diy, di 1 1
Sy Y Sy Yt
m__ﬁi 2 0 v+~h ic

As far as t > 0 is concerned, the nonhomogeneous differential equation
(2.24), with the initial condition given in (2.25) and (2.26), is equivalent to

d %, diy, .

ar + hQnH +iz=0
with

il(0+)=0

and

dig, _ 1
& =1

Fort < 0, clearly, if(f) iszero. The solution of the above is therefore

LC

Fig. 2.6

2
i(t) = u(t) <= eot sin war
@g
The waveform is shown in Fig. 2.6a. Note that (2.32) can also be obtained
Woﬁ %\n nmﬂ.o.w%ﬁ response of (1.24) for a given initial state I, = 0 and
0= 4 : :

Consider the parallel connection of the capacitor and the current source i;.
In Chap. 2 we showed that the parallel connection is equivalent to the
series connection of the same capacitor and a voltage source v,, where

olt) = & J_ieyar

Thus, for an impulse current source, the equivalent voltage source is
(1/Cu(f). Fort < 0, the voltage source is identically zero, and for t > 0,
the voltage source is a constant 1/C. The series connection of an un-
charged capacitor and a constant voltage source is equivalent to a charged
capacitor with initial voltage 1/C. Therefore, the impulse response of a

t>0 (2.33)

(2.34)
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o gin Emn
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Envelope —_ ¢
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Impulse response of the parallel RLC circuit for
the underdamped case (Q > %).

parallel RLC circuit due to a current impulse in parallel is the same as a
zero-input response with v(0+) = 1/C. These equivalences are illus-
trated in Fig. 2.7. .

Let us verify by direct substitution into Egs. (2.24) to (2.26) that (2.32)
is the solution. This is 2 worthwhile exercise for getting familiar with ma-
nipulations involving impulses. First, iz, as given by (2.32) clearly satisfies
the initial conditions of (2.25) and (2.26); that is, if(0—) =0 and
(di/drY0—) = 0. It remains for us to show that (2.32) satisfies the differ-
ential equation (2.24). Differentiating (2.32), we obtain
m = Fv at gj v

@ |mSAem»1 sin wat | +
Now the first term is of the form 8(£)f(r). Since 8(¢) is zero whenever 7 5= 0,
we may set ¢ = 0 in the factor and obtain 8(z)f(0); however f{0) = 0.
Hence the first term of (2.33) disappears, and

dy _ st
dr Wy

UOO® ot o5 (wat + ¢)
wg

€2t cos (wat + ¢)
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we have verified by direct substitution that (2.32) is the impulse response
of the parallel RLC circuit.
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Exercise Show that the impulse response for the capacitor voltage of the parallel
RLC circuit is

we? _
2.36) velt) = u(t) ,\W“ﬂ = cos (wdt + $)

The waveform is shown in Fig. 2.6b.

is(t) = 8(¢) +0 r R

(a)

e
Chﬁuv = U hv @ L R h
\_r

We use the relation between the impulse response and the step response.

This method is applicable only to circuits with linear time-invariant ele-

ments for it is only for such circuits that the impulse response is the

derivative of the step response.

Exercise Show that the impulse responses for iy, in Eq. (2.32) and v in Eq. (2.36)
are obtainable by differentiating the step response for iz in Eq. (2.21) and
ve in Eq. (2.23).

Physical  Let us use the pulse input i(f) = pa(¢) as shown in Fig. 2.8a to explain

111 BT

Second method
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(®)

intorn i = Aap Tt rcm s wavnmmdy azed mralinans to 4l s
invernrotation  the bekhavior of all the branchk sursends and YOIGEDS il LiC paiauct ALl

circuit. Remember that as A — 0, pulse p, approaches an impulse, and
the response approaches the impulse response. To start with, we assume
A is finite and positive, but very small. From the discussion of the step

it
vo(0+) ==

- m A'bf

(e)

2. - :
Fig. 27 The _n_:.hoEn:.. of determining the impulse response of a
parallel RLC circuit is reduced to that of determining the
zero-input response of an RLC circuit. Note that the

parallel connection of the capacitor and the impulse cur-

M_H_n source in (a) is reduced to the series connection of
E..Sﬁgq and a step voltage source in () and is
wq_.on_co&oown_.wwn&nmvwnnn.._:nn. .

i =Py Y%
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Fig. 2.8 Physical explanation of impulse response of a parallel RLC circuit; p, is the

we shall see tha i . i
* bk len hiad gide s om:b- o 20 as it should be. .HBE.: input pulse; the resulting v, ic, iz, and iy are shown.
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response, we learned that at r = 0+ all current from the source goes into
the capacitor; that s, i(0+) = i:(0+) = 1/A, and ix(0+) = ir(0+) =0,
The current in the capacitor forces a gradual rise of the voltage across it
atan initial rate of (dve/df)(0+) = i{0+)/C = 1/CA. Since our primary
interest is in a small A, let us assume that during the short interval (0,4)
the slope of the voltage curve remains constant; then the voltage reaches
1/C at time A, as shown in Fig. 2.8b. The current through the resistor is
proportional to the voltage ve, and hence it is linear in 7 (see Fig. 2.8d).
The inductor current, being proportional to the integral of vy, is parabolic
in 7 (see Fig. 2.8¢). The current through the capacitor remains constant
during the interval, as shown in Fig. 2.8¢. Of course, the assumption that
during the whole interval (0,4) all the current from the source goes through
the capacitor is false; however, the error consists of higher-order terms
in A. Therefore, as A— 0 the error becomes zero. Going back to Fig.
2.8a, we see that as A — 0, i, becomes an impulse 8, v¢ undergoes a jump
from 0 to 1/C, i¢ becomes an impulse &, ip undergoes a jump from 0 to
1/RC, and iy is such that iz(0—) = iy(0+) = (dir/di)(0—~) = 0 and
(diz/dr)(0+) = 1/LC. Finally, as A — 0, from KCL we see that
iol0+) = —i(0+) — ir(04) = 21
AN ¥

Note that these conditions check with those found earlier by other
methods, as in (2.31).

The State-space Approach

The analysis carried out in the previous sections was a straightforward
extension of the method used for first-order circuits; that is, pick one
appropriate variable (i, in the case above), and write one differential equa-
tion in this variable. Once this equation is solved, the remaining variables
are casily calculated. However, there is another way of looking at the
problem. Itis clear that the zero-input response is completely determined
once the initial conditions of the inductor current I, and of the capacitor
voltage ¥, are known. Thus, we are led to think of I, and ¥, as specifying
the initial state of the circuit; and the present state (i(®)ve(r)) can be ex-
pressed in terms of the initial state (o,¥). In other words, we may think
of the behavior of the circuit as a trajectory in a two-dimensional space
starting from the initial state (/o,V}), and for every ¢ the corresponding
point of the trajectory specifies iz(f) and ve(f).

We may legitimately ask why we need to learn this new point of view.
The reason is fairly simple. First, it gives a clear pictorial description of
the complete behavior of the circuit, and second, it is the only effective
way to analyze nonlinear and time-varying circuits. In these more general
cases, to try to select one appropriate variable and write one higher-order

(ERY)

(32)

33)

Sec. 3 The State-space Approach 197

differential equation in terms of that variable leads to many unnecessary
complications. Thus, we have a strong incentive to learn the state-space
approach in the simple context of second-order linear time-invariant
circuits. A further advantage is that computationally the system of equa-
tions obtained from the state-space approach is readily programmed for
numerical solution on a digital computer and readily set up for solution
on an analog computer. A more detailed treatment of the state-space
approach will be given in Chap. 12.

Si ¢ ons an

Consider the same parallel RLC circuit as was illustrated in Sec. 1. Let
there be no current source input. We wish to compute the zero-input re-
sponse. Let us use iz, and ve as variables and rewrite Eqs. (1.15) and (1.6)
as follows:

di _ 1

= — >0
7 mca =
blluul-.sll_ui >0
” C o~ Ch: =

The reason that we write the equations in the above form (two simulta-
neous first-order differential equations) will be clear later. The variables
ve and iz, have great physical significance since they are closely related to
the energy stored in the circuit. Equations (3.1) and 3.2) are first-order
simultaneous differential equations and are called the state equations of
the circuit. The pair of numbers (ir(f),vc(f)) is called the state of the circuit
at time t. The pair (i(0),vc(0)) is naturally called the initial state; it is
given by the initial conditions
it(0) = Ip
ve(0) = Vo
From the theory of differential equations we know that the initial state
specified by (3.3) defines uniquely, by Eqgs. (3.1) and (3.2), the value of
(i()we(?) for all ¢ > 0. Thus, if we consider (ir(f),ve(r)) as the co-
ordinates of a point on the iz-v¢ plane, then, as ¢ increases from 0 to co,
the point (iz(f)ve(t)) traces a curve that starts at (Io,V;). The curve
is called the state-space trajectory, and the plane (ir,vc) is called the state
space for the circuit. We can think of the pair of numbers (iz(f),vc(f)) as
the components of a vector x(f) whose origin is at the origin of the co-
ordinate axes; thus, we write

i)

X)) = oelt)




