ENGINEERING 11 ELECTRICAL CIRCUIT ANALYSIS

2002 page 1

FINAL EXAM

All problems have equal weight.

1. In the circuit below, there are two ideal diodes, D_3 and D_4 . Find the voltages at each of the nodes a through e, and the currents through each of the diodes.

ENGINEERING 11 PHYSICAL SYSTEMS ANALYSIS FINAL EXAM

2. Note that parts a and b are independent.

a. For the logic table given below, synthesize a logic circuit using the minimum number of logic gates you can. You may use gates with up to three inputs.

CD\AB	00	01	11	10
00	1	0	1	1
01	1	1	1	1
11	1	1	1	1
10	0	0	1	- 0

b. A dc voltage source provides 1 V between terminals 1 and 2 in the circuit shown below. What voltage would a voltmeter read between terminals 1 and 3?

Hint: you may find the following formulas to be useful.

 $Z_i = \frac{Z_{ij}Z_{ki}}{Z_{ij} + Z_{jk} + Z_{ki}}$

 $Z_{ij} = \frac{Z_i Z_j + Z_j Z_k + Z_k Z_i}{Z_k}$

ENGINEERING 11 ELECTRICAL CIRCUIT ANALYSIS

2002 page 3

FINAL EXAM

- 3. Please note that parts a and b are unrelated.
- a. Construct the dual of the circuit below. For extra credit, locate the duals of V_a , V_b , V_c , V_d , V_e , I_1 , and I_2 on the new schematic.

b. Find an expression for the voltage gain, v_0/v_{in} , for the circuit shown below. Hint: I suggest starting with two equations in two unknowns, and eliminating the unwanted unknown to obtain a single equation relating v_0 and v_{in} .

ENGINEERING 11 ELECTRICAL CIRCUIT ANALYSIS

2002 page 4

FINAL EXAM

4. In the circuit below, the switch S is in position 1 for a long time. At time t = 0, S moves to position 2.

- a. How much energy is stored in the capacitor on the left at t = 0-?
- b. Write expressions for $v_1(t)$ and $v_2(t)$. How much energy is stored in each C? How much energy has been dissipated by the resistor R_2 ? Compare to the energy stored in the capacitor on the left at t = 0- and determine whether energy has been conserved. What happens to this energy balance equation if R_2 has a negligible resistance? Please explain.

ENGINEERING 11 PHYSICAL SYSTEMS ANALYSIS FINAL EXAM

- 5. Short Answer Questions (unrelated)
- a. Describe the difference between the natural (homogeneous) and forced (particular) responses of a circuit.

b. What is impedance? Briefly describe as many uses of impedance as you can.

- c. Give examples of a simple high pass filter, a simple low pass filter, and a simple band pass filter.
- d. What are pole-zero plots, and why are they useful? How are they related to Bode plots? Explain (briefly) what "s" is.
- e. What are phasors and why do we use them?
- f. Describe two possible ways to solve for voltages and currents in a circuit with a nonlinear element.