CHAPIER 5 FCRCED RESPONSE

This 1ooks familiar; < form it is similar to the equation resulting from the applica-
tion of Kirchhoff's voltage law to the cirewt of Fig. 4.1 (repeated here as Fig. -
> 5.14b)

L :
Rr+Lafv {5-27

“. Mathematically, these iwo integrodifferential equations are the samey/and, there-
fqre, the crreuiis are analogous; the solutions of the two equations pfe identical if
one set of symbols is substituted for the other,

* Ror exponential functions we expect a morional impedanc,
The natural behavior is defined bv Z{s}=0 or 5= -,
u = Uge"®Mi dgcays exponentially with a ime constant
F on the mass corresponds to a *‘direct” force; then Z(0)
sty 17 = F/B is the forced response to a direct torce.

For a sinusoidal pull £ = V2 Fcos (ot + 8),ap
where F = F/8: The motional impedance 15

) =D + sM..
/M and velogity
. A steady pull f =
D, and sieadv veloc-

sor approzach is indicated

Zije) == D + M~ Zfd (5-28)
where
Z="DFt (wMy¥ and/ ¢ = arcian % (5-29)
Then : ,;‘/
¥ F
R (5-30)
Z Fle .
and

ulr) 3 cos o 4 6 - & (5-31)

In this case we have sotved the fiechanical circuit by using the techniques devel-
oped for electrnical circuiis. Rccognii‘tqg that the fwo circuiis are analogous, we
could have gone directlv {o }he soluticn by making appropriate subshinbons m
Eq. 5-24. The analogous tefms are idenﬁtjed by a companisen of Eas. 5-26 and
5-27; the results are tabufated in the first ti}ve rows of Table 5-1.

& e

- %
Table 5-1  Analegous Quantities

;.;7‘ Mechancat M D K fy »  x
Elecirical L. R C v it q
Rotational J DK ot w @
Thermal R+ C, = q;“.\‘ W
Electical L € & L+ v %Af

T The term A {lamhbda) is called flux linkage and 1
eual to | v dt. (See Bq. 21-1.}

Sﬁk

" The mechanical analog for capacitance C ¢an be obtamned by‘ﬁgomparmg the
povernmg equatiens for the circuits mn Fig. 5.15a and b. Here friciencoefficient D

(analogous 0 R) is mtreduced by the dashpot and compliance X is irithgauced b
the spring. From the equations

i . i
v=R1+E_|dr and J—Du+KJua't
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{a) Elecgricat {l) Mechanical
Figure 5.15 Other examples of analogous circuits.
.
",

1t is seen that compiiapce K is the analog of capacitance C,
ment x = [ u df and charge ¢ = i dr, we ses that x au 4 are analogous.

-,
L ™, and gr = - ar (5-33)
where gr = rate of heat flow m joules per sécond (Fig. 5.15¢)
Ry = thermal resistance 1 secoyds’- kelvins per joule
== {emperature difference = Fio T: in kelvins
C, = thermal capaciance in jeules er kelvin
wr = {hermal energy n joulés Kl

The first eauation expresses the'fact that the rate ofihieat transfer by conduction 1s
directly proporhional to the j€mperature difference. Fhe second provides for the
heat absorbed by a body pnder conditions ot changing ¢mperaiure. Comparison
of these equations wit}y ose describing electric circuit ca ponenis leads to the
thermal analogs showh tn Table 5-1. Note that in this analog there 1s no term
analogous [0 mass,or inductance; heat flow does not exhibit dny momentum or
mertia effect. / Em{\

Equauo&; -33 have little practical value because they ymply lumped thermal
effects, whegéas heat conduction 15 always a distributed phenomenon.
complicat}ah 15 that R- and C, vary widely with temperature. in sptic
limltall}ﬂ’s, writing the equations and identifying the anatogous terms are vall

& of the msights gamed when the techmaues of circwit theory are applied

becal
(segggohlem P3-g), ;
Vi Flectrical aralogs have been used te study heat flow 1n power transistors,

lz,he produciron and absorpizon of neuirons in a nuclear reacier, and the behavior.

of diverse acoustical and hydraulic svstems, In recognition of the ease and effec-
tiveness of the electronic analog computer, the principles and eperation of this
versatile engineering toel are described-in Chapter 16,

DUALS
For the series combination of R and L (Fig. 5.16a on p. 168),

Z =R+ 0L = Zjh = VR + (oL} [arctan wL/R " {5-34)
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ta) R and L in serios ’ {b) 6 and C n parallel

Figure 5.16 Series and parallel circuits and their immittance diagrams,

For & current 1 i= I8,

The total voltage across R and L in senes leads the current by phase angie ¢,
something less than 90°,
For the parallel combination of G and C (Fig. 5.16b),

Y = G+ jul = ¥/d = VG + (wCP farctan wC/G (5-36)

For a voltage V = v/,
1=YV= Yo Vig=I5+4 (5-37)

The totat current through G and € in parallel leads the voltage by phase angle ¢,
something less than 90°,

At this time an alert student shonld be aware of a cerizin amount of repeti-
ton m the discussion of electrical circuits. The equatiens and diagrams for the
sertes RL circuit of Fig. 5.16a are similar to those for the parallel G circuit of Fi,

5.16b. With some changes 1n svmbols, the equations and diagrams for a parallel -

GCL crcuit (Fig. 5.9) would be just like those for the series RLC circuit of Fig.
5.8. Apparently, when we solve one electncal circust, we automatically obtain the
selution to another., How can we take advantage of this interesting fact?

In drawing up the table of mechamcal-elecirical analogs, we used the series
RLC cirenit (Fig. 5.8a). ¥, instead, we write the integrodifferential eavation for a
parallel GCL cirenit similar io Fig. 5.9, we get the different set of analogs shown in
the fifth row of Table 5-1. It is alwavs possible to draw twe electrical circuits
analogous o & given physical svstem, and ihe corresponding terms in the two
circuits are related in accordance with the principle of duality,

When the sei of transforms thai converis one sysiem into another also
converts the second into the firsi, the svstems are said to be duals,

The series RLC ciremt and the parallel GCL cirenit are szid to be duats’

hecause, by using the set of transforms mdicated in Table 3-2, either circuit can be

converted into the other. In general, the loop equations of 4 planar network have -

the same form as the node equations of its dval. T Some of the dual relations that
exist in electrical neiworks are listed in Table 5-3.

A knowledge of dualitv enables us to double the benefit from any eircuit
analvsis we perform. Someiunes it is advantageous to construct the dual of a given -

t In the language of network topology, a planar network is one which can be drawn on a sphere with
no wires that cross; every planar network has a dual.

V=Zl=Z/h I[8= VIt d (5-35) -
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Table 5-2 Dual Quantities Table 5-3 Dual Relations

L R C w : Z X Loop current Node voltage

6 L - v ¥V R Kirchhoff's voltage Jaw  Kirchhoff's current Jaw
Series connection Parallel connection
Current source Voltage source
Short circuit Open cireuit

cirenit insiead of working with the given cirenit itself. The first step (see Fig. 5.17)
is to pface a node in each loop of the given circuit and one more nede outside;
these are the nodes of the dual ciremt. Then, through each etement of the given
cirelut, draw a line ferminating on the new nodes. Finally, on each line place the
dual of the element through which the line is drawn; these lines are the branches of
the dual cireurt, The procedure s llustrated in Example 8.

(b)

o
3

{a}
Figuze 5.17 Construction of a duai circuit.

The voitage divider of Fig. 5.18 is a useful For the volrage divider,
device, Write an expression for V- in terms

V2 Z

. Then draw the duai circuil and state o =
¥ I+ L

(5-38)
The voitage acrass Zo» is 10 the total voltage as the imped-
ance Z, is to the sum of the impedances.

For the current divider, the dual relation 1s

LY
T Y +Y (-39

The current through Y. is o the total current as the admii-
tance ¥» is te the sum of the admittances.

2
{n) Voliage divider

igore-5.18 Deriving the dual of a circuit. {b) Current divider
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Exercise 5-16

I

where ¢z = tan™' (X/R) ¢y = tan”! (B/G)
R = ac resistance i ohms ¢ = ac conductance In siemens
X = reactance in chms B = susceptance 1n siemens
= at or ~l/wC = wl or ~lwiL

For the crrcuit of Exampie 8, let Zy=FRiand Zy = Ry + joL.

{a) Write Eqs. 5-38 and 5-39 explicitly 1n terms of circuit componenis R, £, G, and €.
(b) Identifv Y, and Y» as specific components,

B To determine the forced response to simusoids:

Answers:  (a) Y Bl L Gy + joC

V R+Rtil TG T Gl

L. Transform tme functions to phasors ané evaluate complex immittances.
2. Combine immttances in series or paraliel to simplify the circuit.

3. Determine the desired response m phasor form.

4. Draw a phasor diagram to check values and display results,

5. Transform phasors to time functions if required.

(b) ¥ is a conductance G = 1/R.. ¥, is an admsttance G» + jwC, consisting of a conduc-
tance 1 parallel with a capacitance, ;

Analogaus svstems are described by similar mtegrodifferential equations.
Corresponding terms in the equations are anzlog quantities.
The sotution of a problem 15 applicable to all analogous problems.

GENERALITY OF THE IMPEDANCE APPROACH

The impedance approach is 2 good illustration of the power of & general method,
Although the impedance concept was developed for use 1n determining naiural
respansg, 1t turns cut to be applicable to forced response as wefl, Although it was
defined in terms of exponential functions, with a proper interpretation mpedance
can also be used with direct ano sinusoidal currents, Furthermore, when an elec-
trical eircuit has been solved, we automaticallv have the solution o its dual;
through the analvsis of an electrical circuit, we gam insight into the behavior of
other analogous systems. Mastery of this important concest and the associated
technigues 15 well worthwhile.

8 Two networks are duals if the set of transforms that converts the frst into the
second also converts the second into-the fiest. The loop equations of a planar
network have the same form as the node equations of its dual.

TERMS AND CONCEPTS

SUMMARY

ac impedance Ratio of phasor voltage V to the
phasor current I in ohms.

admittance Ratio of current to voltage for expo-

foreed response Behavior of a circuit due to an
rexiernal energy source, dependent on the form of
the forcing function.

nential forcing function; ratlo of phasor current phasor Tml{SfOI‘m of a s?:_msoidal veltage or cur-
to phasor voltage in siemens, rent including the effective, value and the phase
angle,

2 Impedance is defined for exponentials of the form : = Ip .
Impedances are combined in series and parallel, Just as resistances are.
In general, the forced response 15 governed by » = Z{s)i where

Zy{s) = R Zi(sy = sL Zels) = 1/sC

8 Fors =0,i= Iy =1, a direct current. In this case, Zp(0) = R.
Z5(0) = 0. v, an inductance looks Jike a shorl eircmt to a direct current,
Ze(0) = =, ., a capacitance looks like an open crrcuit to a direct voltage,

analogous svstems  Svstems described by the same

. N . . hagor  disgram Graphical representation of
-set of integrodifferential equations. » B P

phasors and thewr reletonship on the complex
onductance - Real part of the admitiance Y with plane. i
units of siemens.

reactance  Jmagary part of the‘.impedance Z with
units of ohms, !

direet current Unidirechional current of constant

smagaitude. susceptance  Imaginary part of the admittance Y
with units of siemens.

B A sinusoidal function of time g = 4, cos (w? + @) can be inferpreted as the
real part of the complex function A,, e 0 = 4 22 . /7 gioi
The complex constant Ae# is defined as phasor &, 'the transform of al1),
Phasor catcuiations follow the rules of complex algebra.

- Aual sysiems Svstems such that the set of trans-
¢ forms that converts one svstem into another alse transform Charge in the mathematical description
onverts the secoid system inio the firsi. of a physical variable io facilitate computation,

8 Phasor voltage and current are related by the complex mpedance 2, = Z(fes)
or the complex admittance Y = ¥(juw).

REVIEW QUESTIONS

V=21 where Zp(jw) =R Zujo) = jwl Ze(jw) = 1jwC
| I=YV where ¥i(jo)=G Yi(jo) = Vel Yeljw) = jal
For phasors, Kirchhoff's laws are written; £V = 0 and ST = 0,

4. What 1s meant by = *'long time'* after ciosing a
switch?

5. What two major advaniages result from repre-
senting sinusoids by exponentials?

6. Write out 1n words a definition ot a phasor.

7. Howcana phasar, a2 constant quantity, repre-
sent a variable function of time?

1. Define 1mpedance.

2, Derive the dc element impedances for' R, L,
and C from the vafues of Z(jw), letting @ ap-
proach zerg as a limt,

3. In terms of steady-state response to a direct

current or voltage, what is the effect of an -

ductznee? Of a capacitance?

8 The sinusoidal response of a two-terminal network 1s completely defined by

Z=Zjgz=R+X o Y=7Y/g,=G+8g




