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complex conjugates. As R increases to R;, the roots move along a curved path to
points s;. The radial distance from the origin to either root is given by

Gl R IR T

a constant. Therefore, the locus is a circular arc of radius ,.

The critical value of resistance is defined by @ = 0 or, in other words,
where the discriminant equals zero. For this condtion o = —a, = —R/2L =
— VI1/LC. At this value of R = R, the roots coircide on the real axis. As R
increases to Ry, 54, moves toward the origin and s,, noves out along the negative
real axis. As R increases without limit, s; approaches the origin and s, increases
without limit.

Exercise 4-8

For the series RLC circuit of Example 3, let L = 10 mH and C = | uF. Determine:

(a) The undamped natural frequency w,.
(b) The critical value of the resistance R, and the critical damped roots 5. = §5; = 5.

Answers: (a) w, = 10% rad/s; (b) R = 200 ; and 5, = —-10*s~1.

With a different circuit parameter the locus tekes on a different shape (see
Problem 4-23). In any such plot, called a root locus, the location of the roots
determines the character of the natural response, «nd the effect of changes in a
parameter is clearly visible to the initiated. The first step in developing this power-
ful tool is mastery of a new concept—impedance.

4-4
[MPEDANCE CONCEPTS

If we limit the discussion to exponential waveforms, some interesting and valu-
able relations between voltage and current can be established. Actually this is not

s large, positive

s small, positive

§ Zero

—_——

Figure 4.12 The range of exponential functions for real values of s.
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a severe restriction; already we have used exponentials to represent sinusoids
and exponentials with s = 0 can be used to represent direct currents. The range o
exponential functions for positive and negative, large and small, real values of s
indicated in Fig. 4.12. )

The key property of an exponeatial function is that its time derivative is alsc
an exponential. For example, if

di

i=Ipe", Frin slp e = si (4-2%)
or if
dv
v = Vpe", = = sVpe¥ = sv (4-26)

This property greatly facilitates calculating the response: of circuits containing
resistance, inductance, and capacitznce because of the simple voltage—current
relations that result.

IMPEDANCE TO EXPONENTIALS

The ratio of voltage to current for exponential waveforms is defined as the
impedance Z. For a resistance, v = Ri and

Ze =2 =" = Rin ohms @-27)
For an inductance, v = L(di/dt) = sl.i and

Z = % - ‘{‘—' = 5L in ohms (4-28)
For a capacitance, i = C(dv/dt) = sCv and
‘ Zo =L om=lm i chms (4-29)

The impedances Zg, Z;, and Z are constants of proportionality between voltages
and currents that are exponential functions of time ¢ and frequency s. It can be
demonstrated that in each case the dimensions of impedance are the same as those
of resistance. (Can you do it?) The general relation

v=2i (4-30)

corresponds to Ohm’s law for purely resistive circuits, but it must be emphasized
that impedance is defined only for exponentials and for waveforms that can be
represented by exponentials. With this restriction, impedances can be combined
in series and parallel just as resistances are, and network theorems can be ex-
tended to include circuits containing L and C.

1 Assume another waveform such as i = Iof; thea vy = L(di/dt) = LI, and the ratio v /i = LIp/It =
L/t is a function of time and not a constant as it is for exponentials.
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In the circuit of Fig. 4.13, R, =2 Q, C =
0.25 F, and R = 4 (). Using the impedance
concept, find the currents i and i¢ for a volt-
agev==6e2V.

Following the rules for resistive networks,

_ZRZc R(1/sC)

E= it L7 MY LR
_ 4/(-2x0.25 -8 _
=2+t i F 2z x025) "2tz - 20

Then
. v 6e? _
1 7 2 —3 e A

Using the current-divider and impedance concepts,

Figure 4.13 The impedance concept in circuit ; Zg-i 4-i _
A —-6e ¥ A

et Z, 4=2

THE IMPEDANCE FUNCTION
For the circuit of Fig. 4.14, the governing equation is
di

., |
LI+R,+Z,f:d:-u 4-31)

For an exponential current i = I e*, this becomes

»

Lsi+Ri+ii=v

sC
and
AL e (4-32)
i sC
'SL

Figure 4.14 The impedance of an RLC circuit.

Note that when the characteristic equation (Eq. 4-13) is divided through by s, the
right-hand side of Eq. 4-32 appears; but Eq. 4-32 was obtained by expressing the
impedance as a ratio of an exponential voltage to an exponential current. The
same relation could also have been obtained by considering that the resultant of
impedances in series is the algebraic sum of the impedances or

Z=ZL+ZR+ZC=Z(S)

where Z(s) signifies the impedance to exponen-ials of the form A e*.
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Because the impedance function Z(s) contains the same information as th
characteristic equation, it is a useful concert in predicting the natural behavior of *
a system and it can be extended to include the prediction of steady-state respons

Example 6

Given the circuit of Example 5 with v = A great advantage of the impedance concept is the ease thh
Vp e, determine and plot Z(s) for real  which impedances may be combined. Here
values of s.

B ZoZ; R(1/5C) 3
2=t t 7z 7z - Rt Ry 1sC i
_R +- R SRRC+R +R £
=Rt ReC+1-" sRC+1
Z(s)
ForR, =2Q,R=40,and C = 0.25F,
L1 1 25+6 _s+3 :
g A B =T~ i

From the graph of Fig. 4.15 and from the expression for Z(s)
it is seen that Z(s) = 0 at s = —3 and that Z(s) increases |
without limit as s approaches —1.

Figure 4.15 The impedance function for the
circuit of Fig. 4.13.

¢ dme e et

Ao

As indicated in Example 6, the impedance function can be obtained easily in a
circuit for which the governing equation may be quite complicated (i.e., it may
consist of a set of simultaneous integrodifferential equations).

Exercise 4-9

Consider the circuit shown in Fig. E4.9 r < > -
wherei=e¢ %A, L=1 H, C=1 F, and
R =1 Q. Find the impedance Z of the cir- i gk L i
cuit and v and ig. The arrow with Z implies r

1o

Z

A\l
"
(9]

that we desire the impedance looking to the l"’
right from the source. :

Answers: Z=—-31 O, v=—3r eV,
ip=—FreTA. Figure E49

Exercise 4-10

For the circuit of Fig. 4.13 withR; = 1Q,R = 1Q,and C = 0.5 F, determine and plot Z(s)
for real values of s.

Answer: Z(s) intersects the x-axis at —4 and interse:ts the y-axis at +2.
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In Example 6, Z(s) is plotted for real values of s. Since each value of s corre-
sponds to a particular exponential function, the impedance Z(s;) is the ratio of
voltage to current for the particular exponential function of time i = I, €. For
instance, to determine the opposition to direct current flow, the impedance is

Plot the magnitude of the impedance func-
n of the circuit of Example 5 for real val-
s of s and for imaginary values of s, and
1:i1cn sketch the impedance surface.

: y
I

2l

Sl 1
-4 -3 =2 =1 0 1 2
(a) 12! for real values of s

121 s’—-

L1 1 JEie )
-8 -2 -1 o0 1 2

(b) 1ZI for imaginary values of s

(¢) |Z| as a three-dimensional surface o
Figure 4.16 Graphical representation of the impedance function.

The magnitude of Z(s) for real values of s corresponds to the
graph of Fig. 4.15 with negative quantities plotted above the
axis. For imaginary values of s(+j1, %2, etc.) the magni-
tude of Z(s) is calculated and plotted in a similar way. For
5= =, .

3

3= _2V10 _
Zo) =27 ad |Z="—=450
For the complex value s = —1 — j2,
L 2-j2 _2VE_
Z(s) =2 =72 and |Z| = N —.2.8 Q

Using the profiles of Fig. 4.16a and b and additional points in
the complex plene, the impedance surface is sketched in Fig.
4.16¢. The poirts of zero and infinite impedance are plotted
in Fig. 4.16d.

-2

-3
(d) Polz-zero diagram
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calculated for s = 0 since i = Ip e®* = I, a direct current (dc). In Example 6,
Z(0) = 6 , the equivalent of the two resistances in series. This is physically
correct (Fig. 4.13) because under steady corditions with no change in the voltage
across the capacitor, no current flows in C and the circuit, in effect, consists only
of the two resistors. !
Every point in the complex frequency »nlane defines an exponential function
and the complete plane represents all such functions. The magnitude of the imped-- %
ance, |Z(s)|, can be plotted as a vertical distaace above the s plane and, in general -
the result will be a comphcated su:face (See Exa.mple 7 on p. 129.)

great (approaches infinity) for particular va ues of s appropriately called poles
The tent touches the ground at particular values of s called zeros. The equation of 3
the surface is usually quite complicated, bu: the practical use of the impedance -
function in network analysis or synthesis is relatively simple for two reasons. In '/
the first place, we are usually interested in only a single profile of the surface; for ?;‘;
example, the profile along the jw axis indicates the response to sinusoidal func-
tions of various frequencies. Second, just as two points define a straight line and
three points define a circle, the poles and zzros uniquely define the impedance
function except for a constant scale factor. As a result, the pole-zero diagram of
Fig. 4.16d contains the essential information of the impedance function shown in
Fig. 4.16c. The locations of the poles (X) and zeros (O), which are relatively easy -
to find, tell us a great deal about the natural response. #

o

Exercise 4-11

(a) Plot |Z| of Exercise 4-10 for imaginary values of s.
(b) Plot the pole-zero diagram of Z(s) of Exercise 4-10.

Answer: (a) |Z] is equal to 2 at s = 0 and 1.58 at s = j2; (b) a pole at —2 and a zero at —4.

PHYSICAL INTERPRETATION OF POLES AND ZEROS
In the general relation between exponential voltage and current
v=2i

what is the meaning of “‘zero impedance’? [f the impedance is small, a given
current can exist with a small voltage applied. Carrying this idea to the limit,
under the conditions of zero impedancet a current can exist with no applied

T To get the ““feel” of zero impedance in a physical systen:, perform the following mental experiment.
Grasp the bob of an imaginary pendulum between your thumb and forefinger. Applying a force, cause
the bob to move along its arc with various motions. For motions against gravity or against inertia,
appreciable force is required; the mechanical impedance it appreciable. To maintain 2 purely sinusoi-
dal motion at the natural frequency of the pendulum only a little force (just that needed to make up
friction losses) is required; the mechanical impedance to such a motion is small. To maintain a motion
approximating an exponentially decayir\l‘g sinusoid of just the right frequency, no force is required; for
this motion, velocity is possible with no applied force. In other words, to this motion mechanical
impedance is zero!
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voltage; but a current with no applied voltage is, by definition, a natural current
response. We conclude, therefore, that each zero, s = sy, of the impedance func-
tion for any circuit designates a possible component, I; e*", of the natural response
current of that circuit, This conclusion is supported by the fact that for the circuit
of Fig. 4.14, the zeros of the impedance function (Eq. 4-32) are identical with the
roots of the characteristic equation (Eq. 4-13). Knowing the locations of the
impedance zeros, we can immediately identify the exponential components of the
natural current.

Given the circuit shown in Fig. 4.17, deter- As previously determinec,, the impedance function looking
mine the poles and zeros of impedance. If into the circuit at terminals ab is

energy is stored in the circuit in the form of

an initial voltage V,, on the capacitor, pre- Z(s) =22 +3
dict the current i that will flow when the st+1
switch S is closed. Where s = —1, the denormninator is zero and
Ry =20 Z(s) = =; therefore,
s = —1 is a pole.
b= Where s = —3, the numerator is zero and
~ : +
s Voo=C=}F Z(s) = 0; therefore,
R=40 T s = —3 is a zero.
b N If the impedance is zero, a current can exist with no
(a) external forcing voltage. Therefore, the natural current be-
havior is defined by s = .;; = =3 or
Jw i=Ie™
E As before, I, is evaluated from initial data. At the instant the
1 switch is closed, V, appears across R (tending to cause a
‘ current opposite to that essumed) and
V,
—=1 10—-11!0211——'&‘10"
=9 Hence
®) PR /-

Figure 4.17 A pole-zero diagram of imped-

ance.

is the natural response current.

Exercise 4-12

Determine the current through and the voltage across the capacitor C of the circuit of
Example 8 for ¢+ > 0. Use the current-divider principle.

Answer: v=Vge ¥V, i=—-075V,e ¥ A.

If an impedance zero indicates the possibility of a current without a voltage,
what is the significance of an impedance pole? Since v = Zi, if the impedance is
very large, a given voltage can exist with only a small current flowing. Carrying
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this idea to the limit, under conditions cf infinite impedance a voltage can exist
with no current flow, in other words, a natural voltage. We conclude that each
pole, s = s,, of the impedance function of a circuit designates a possible compo-

nent, V, e, of the natural voltage respcnse of that circuit.

Example 9

Returning to Example 8, assume that en-
ergy is stored in the form of an initial volt-
age V), on the capacitor (perhaps by means
of the voltage source shown in Fig. 4.18).
Predict the votage v that will appear across
terminals ab when the switch S is opened.

Figure 4.18 Natural voltage response.

With the external energy source removed, only a natural
behavior voltage can appear. Such a voltage can exist with
no current flow cnly if the impedance is infinite. For a pole at
s = 5, = —1, the natural voltage behavior is

v=V,e!

V, is evaluated f-om initial data. At the instant the switch is
opened, the current in R, goes to zero and the voltage across
terminals ab is just vg = ve = + V. Hence,

v=Voe!

is the natural response voltage. This result can be checked
by letting v = i,F' where i, is the natural current that would

flow in R if R were suddenly connected across the charged
capacitor.

Exercise 4-13

Determine the equivalent resistance R., for each of the circuits in: (a) Example 8 and (b)
Example 9 for r > 0. Hint: Review the discussion of the circuits shown in Fig. 4.6. Note
that the resistance R; does not enter into the calculation in part (b) after the switch is open.

Answers: (a) Req = 1.333 Q; (b) Rq = 4.0 Q0.

THE GENERAL IMPEDANCE FUNCTION
Typical impedance functions include (for ths circuit of Example 6)

R(1/sC) _SRRRC+ R +R
R + (1/sC) ~ sRC + 1

and (for the circuit of Fig. 4.14)

Z(s) =R, +

1  2LC+ sRC + 1 “
— e — - ———

Z(s)=sL+ R+ C C

The impedance function for any network, no matter how complicated, consisting

of resistances, inductances, and capacitances, can be reduced to the ratio of two
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polynomials in s. In general, we can write

S+ s+ kst + ks + ky
Lt R, T o

Z(s) = K (4-33)

Although it may not be easy, this can always be factored into
(s = s)(s —s2) * * - (s = 50)

(5= 5als — 5o = = = (8 — )

When s = 51, 52, . . . , 8u, Z(5s) = 0; therefore, these are zeros.
When s = s,, Sp, . . . , Sm, Z(s) = ; therefore, these are poles.

If the network is known, the impedance function can be written and factored
and the pole—zero diagram constructed. Conversely, from the pole—zero diagram
the impedance function can be formulated (except for scale factor K in Eq. 4-34).
Theoretically, a network can then be designed or ‘‘synthesized,”” but practically
this is not always easy. The complicated problems are so difficult that entire books
have been written on the subject of network synthesis. In this book, however, we
are concerned primarily with network analysis ancl the problems are more
straightforward.

Z(s) = K

(4-34)

Exercise 4-14

A circuit has an impedance
(P + 45+ 8)(s + 1)
Za) = s2+25+5

~

Determine and plot the poles and zeros of Z(s) in the comp ex s plane.

Answer: Poles: —1 +j2, =1 —j2; zeros: —1, =2 +2, =2 = J2.

For a physical circuit or network, all terms and coefficients of the resulting
impedance Z(s) are real. Therefore, if there are complex poles or zeros, these
poles or zeros must occur in complex conjugate pairs. A similar conclusion can be
drawn for the admittance ¥(s) as discussed below.

THE GENERAL ADMITTANCE FUNCTION

Impedance is defined for exponentials as the ratio of voltage to current. The
reciprocal of impedance is admittance, a useful property defined as the ratio of
exponential current in amperes to voltage in volts so ‘hat

Y:i‘
v

1
7 (4-35)

measured in siemens. For an ideal resistance, the admittance is just the conduc-
tance or
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X% -‘-‘.3-"-
P

For exponential voltages and currents, the admittances of ideal inductive and
capacitive circuit elements are

I AU S S : f!
Yo = S L@ilan ~ sLi~ 5L 36,
_ic _Cldvld) _sCo_

Uc v v

Admittance is particularly useful in analyzing circuits that contain elements con- -
nected in para]lel Since current is directly proportional to admittance (i = ¥v),
admittances in parallel can be added directly just as conductances in parallel are -

added. For example, the total admittance of a parallel GCL circuit is

Yi(s) =G+ sC + 1/sL

The admittance function Y(s) for any network consisting of lumped passive - :

elements also can be reduced to the ratio of two polynomials in 5. In the standard
factored form this becomes

1 1(—5)5—55) - (s~ su)
By = ) K= s (=g (437

Note that the admittance function has poles where the impedance function has
zeros, and vice versa. The pole-zero diagram for the admittance function contains

the same information as the pole-zero diagram for the impedance function, but the |
diagrams are labeled differently. (See Exercise 4-15 on p 136.)

GENERAL PROCEDURE FOR USING POLES AND ZEROS

The pole—zero concept is a powerful tool in determining the natural behavior (and,
as we shall see in Chapter 5, the forced behavior) of any linear physical system

Modified to take advantage of this concept, the general procedure for determining
the natural behavior of an electrical circuit is:

1. Write the impedance or admittance function for the terminals of interest.
2. Determine the poles and zeros, and plot the pole-zero diagram.
3. (a) For the terminals short-circuited, the natural behavior current is

i=he+he®+ .+« + e (4-38)

where 51,52, . . . , s, are zeros of the impedance function or poles of the
admittance function.

(b) For the terminals open-circuited, the natural behavior voltage is
v=V,e + Ve + - -+ Ve (4-39)

where §,, S5, . . . , Sn are poles of the impedance function or zeros of
the admittance function.

4. Evaluate the coefficients from the initial conditions (Example 10).
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::‘ In the circuit of Fig. 4.19a, the voltage
X source has been connected for a time long

(a)

(b)
(b) Derive an expression for current i if the
terminals ab are short-circuited by means of
switch S; as shown in Fig. 4.19c.

[
4

(©
Figure 4.19 The use of poles and zeros.

Following the general procedure,

A 1 RsL _R+sL+$RLC
a 5C T R+sL_  SCR +sD)
_ p s+ (I/RC)s + VLC _ 1
s(s + R/L) T Ts)

In the general form of Eq. 4-37,
1 (s —0)s — [-R/L)
R (5—s)s—s2)

2. The admittince function has zeros at s =0 and
s = —R/L, end poles at s = s5; and 5 = s, where

1 \/l—_L
~3rc T V4R IC
Assuming complex poles, the pole-zero diagram of ad-
mittance is as shown in Fig. 4.19b.
3. For terminas ab open-circuited, the natural behavior
voltage is defined by the zeros of ¥(s) or ‘

v =V, e+ V, e ®Lx

ch(s) =

S1, 82 =

4. At t = 07, the current in the inductance is constant and
vy = L di/dt = 0 = vg, .. all the voltage V appears
across the cepacitance and the current in the inductance
is zero. The second component of voltage (which reflects
the possibili'y of energy storage in the inductance) is
zero. The oaly energy storage is in the capacitor; at
t=07%,

v=V, =V

or the open-circuit voltage across terminals ab is just V.
(There is no way for this ideal capacitor to discharge.)

We interpret the current of interest, i, as a short-
circuit current, in this case at terminals cd. To this current
the impedance is

sLIsC _ sRLC +sL + R
sL +1/sC -  $LC+1

ForR=1Q,L=02H,and C = 0.1F,

0.0252 +0.25 + 1 _
0.027 + 1

Z.As)=R +

s+ 10s + 50
s+ 50

Z.[s5) =

The zeros are s,, 5; = —5 * j5. Therefore,
l;R = Ix e~ sin (5t +6)

The zeros of Z.4(s) and Z,(s) are the same because the
circuits are the same for ab short-circuited. The poles differ,
however, because the open circuits are quite different.
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SUMMARY

Exercise 4-15

A circuit has an admittance
$+45+5

o) = @ v s+ a6+

Determine and plot the poles and zeros of ¥(s). Compare the poles and zeros of ¥(s) with
those of Z(s) of Exercise 4-14.

Answer: Poles: =3, =1 +j\/§, =1 —f\/?:; zeros: —2 + jl1, =2 — jl.

m  Forced behavior is the response to external energy sources.

Natural behavior is the response to internal stored energy.

m Many physical systems with one erergy-storage element can be described

adequately by first-order integrodifferential equations, The general procedure
for determining the natural behavior of a linear system is:

Write the governing integrodifferential equation.

Reduce this to a homogeneous differential equation.

Assume an exponential solution with undetermined constants.
Determine the exponents from the homogeneous equation.
Evaluate the coefficients from the given conditions.

G b e

®m In a second-order system with two energy-storage elements, the character of

the natural response is determined by the discriminant.
If the discriminant is positive, the response is overdamped and is represented
by the sum of two decaying exponentials: @ = A; e + A; e,

If the discriminant is negative, the response is oscillatory and is represented by

the damped sinusoid: a = A e sin (wf + 6).
If the discriminant is zero, the response is critically damped and is represented
by the sum of two different terms: a = A; e + Ayt e*’.

®m Impedance Z (ohms) and admittance ¥ (siemens) are defined for exponentials.

Where v = Zi, Zr = R, Z; = sL, and Z¢ = 1/sC.
Where i = Yv, Y = G, ¥, = 1/sL and Y¢ = sC.

®m Impedances and admittances in complicated networks are combined in- the

same way as resistances and conduc:ances, respectively.
The impedance function Z(s) and the admittance function ¥(s) contain the
same information as the characteristic equation.

m The pole-zero diagram contains the essential information of the impedance

function or the admittance function.

A zero of the impedance function indicates the possibility of a current without
an applied voltage; therefore, a natural current.

A pole of the impedance function indicates the possibility of a voltage without
an applied current; therefore, a natural voltage.
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‘s W Using the pole-zero concept, the general procedure is:

1. Write the impedance or admittance function for the terminals of interest.
. 2. Determine the poles and zeros of impedarce or admittance.
f . 3. Use the poles and zeros to identify possible components of natural voltage

4. Evaluate the coefficients from the given conditions.

(!m%pmg Reduction in amplitude of response with
tlme

dlscrlmmam Quantity under the radical sign in the
solution of the second-order characteristic equa-
tion that indicates the character of the natural
. response.

- ""'-‘T‘ =y

REVIEW QUESTIONS

impedance Ratio of exponential voltage in volts to
current in amperes; the reciprocal of admittance.

natural response Circuit behavior, due to internal
energy storag: alone, that depends only on the
nature of the circuit.

pole Particular value of s for which the magnitude
of impedance .Z(s) or admittance ¥(s) approaches
infinity.

second-order system Circuit or system for which
the homogeneous differential equation contains a
second-degree term due to the presence of two
independent energy storage elements.

zero Particular value of s for which the magnitude
of impedance Z(s) or admittance ¥(s) goes to
zZero.

4

1. Cite an example of natural behavior in each of

i the following branches of engineering: aero-
nautical, chemical, civil, industrial, and me-
chanical.

2. To what extent is the natural behavior of a
system influenced by the waveform of the forc-
ing function that stores energy in the system?

3. Discuss the possibility of a positive exponent
appearing in the natural response of a passive
network. In any physical system.

4. Outline the procednire for determining the natu-
ral behavior of a mechanical system in transla-
tion.

n

In contrast to the exponential behavior of its
idealized model, an actual coasting automobile

comes to a complete stop long before an infinite
time. Why?

Measurements on a certain very fast transient
are difficult and the results include large ran-
dom errors. In determining the time constant
for this system, would a linear or a semilog plot
of experimertal values be preferable? Why?

What is the physical difference between a
*‘first-order” system and a ‘‘second-order”
system?
In what sens2 is the ‘‘characteristic equation’
characteristic of the circuit?

9. In what sense does the ‘‘discriminant’’ discrim-

inate?

10. What important initial information is available

6

7



