QUANTITATIVE METHODS

Decision Tree
Rabies Example

Background Information

Rabies, a disease of the central nervous system. is generally.spread by domestic
dogs, bats, and wild animals. The symptoms of the disease normally appear 4 10 6 weeks
after exposure, The patient is irritable, may have convulsions and finally goes into a
coma. Death often occurs 3 to 5 days after the symptoms appear.

In 1881, Louis Pasteur found that the infectious agent could be recovered from

~-the brain of a dead rabies-infected animal. The agent was invisible under the
microscopes then available and could not be cultivated in nutrients. The agent was called
a virus (Latin for poison). After much experimentation Pasteur developed a vaccine that
he hoped would prevent the disease. In 1885, Pasteur successfully treated a peasant boy
who was bitten by a rabid dog.

The treatment of rabies today consists of one injection of antirabies globulin
followed by five injections of rabies vaccine.
Case Details

Our subject has been bitten by a small dog during an evening in Tijuana, Mexico.
The dog escaped and there is no hope of finding it. Should our subject undergo the rabies
treatment?

(This is based on the autobiographical account by Freeman Dyson.)

Data
4. 18% of bites by a rabid dog cause rabies if untreated.

2. Anyone who contracts rabies dies.
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1 in 200 contract rabies before the vaccine can take effect,
1 in 600 contract encephalitis from the injections and death ensues

4. We need to know the prabability that the dog is rabid. That is, what
fraction of the dogs which bite pedestrians in Tijuana are rabid? We
can make an assumption that this is 1/2. but we will want to see how
the final decision depends on this probability (that is, what is this
particular sensitivity?).

Structure of the Decision Tree

There is only one immediate decision to be made -- whether to have the

treatment or not.
There are three possible outcomes of our decision:
1. Our subject is O.K. after the treatment.
2. Our subject dies.

3. Our subject is O.K. without the treatment.

— @ 0K with treatment
Treatment

@®  Death

No treatmant
(] QK. withoul treatment

To construct the decision tree, we must now fill in the various ways in which we
can move from either decision to one of the qulcomes.

Partial Tree after no Treatment

The easier ha!f of the decision tree is that connecting the "No treatment” decision
Lo the outcomes. Once we decide on no treatment, we know half the cases will be O.K.
since the dog is not rabid. Eurthermore, even if the dog is rabid, 82% ot the cases will
be O.K. Thus, we can draw this portion of the decision tree.
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Now we turn to the top half of the decision tree -- the events that follow a
decision to have treatment. This portion is shown below. Here we assume that we first
can separate off the group that contracls encephalitis.
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For .example. in the botlom halt of the figure, if the dog is rabid, there is 2
obability 5};8%100 our subject will be O.K. without weatment. This branch at this

node has avaie

82
—t 2
5 x 100 or 8

—
Probability Val‘ue
outcome

The other branch has a value

a8
meorO

o

Thus, the node labelled "Dog rabid” has the value
g2 + 0 or 82

In this way we fill in the numbers shown in the diagram and find that the
expected value of the "No treatment” option is 81.

Similarly, for the top half of the diagram we calculate backwards again to obtain
the numbers shown oQ the figure, and finally the value of the *Treaiment" option as

Thus. the decision trea shows that the preferable choice is the "No treatment’
option.

Sensltivity Study
Two sensitivity studies are important in this case:

How does the optimum decision depend on the value we chose {80) for the "O.K.
with treatment” outcome? If we calculate backward, we find that 2 value greater than
91.4 tor the "O.K. with treatment” outcome results in a preference for the treatment
option. Obviodisly, the problem is quite sensitive to this value which we are estimating.

in the section on Data we assumed that 1/2 of the dogs which bite pedestrians in
Tijuana are rabid. If the actual fraction is not 172, the optimum decision could be
ditferent.

Pu.rpo;c of Decision Trees

The real purpose of decision analysis is to force us 1o think of all the factors that
.are important in making a decision. The decision tree requires that we look at the
process step-by-step to see which probabitities are critical and 1o spotlight the values
associated with ditferent outcomes. y
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Election victory
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E(Seff) = .71{100) + .29(100) = 100

E(Hold) = .71(300) + 29(—200) = % = 15526
E(Buy) = 7L(600) + 29(—400) = 31053

Therefore, in order to maximize expected profit, Mrs. Magoo should buy more
stock. Note that this is not the same decision as that based on the original
probabilities. In the solution in Section 15.3, seli bad the highest expected value.
Bayesian decision analysis consists essentially of revising the prior (objec-
tive or subjective) probabilities concerning the states of nature in view of
additional data or information and basing the dedision on these revised prob-
abilities. In the preceding example the conditional probabilities of the reporter’s
predictions given that certain election outcomes were going to occur were of
a rather subjective nature. If the reporter had made predictions for a large
number of clections, these conditional probabilities could, of course, have been
based on (objective) relative frequencies. In many problems relatively objective
determination of these probabilities is possible, as in the following example.

EXAMPLE

The Blue Bolt Company has had a serics of mix-ups oa its production line, and as
a result there is a case containing 100,000 screws in the shipping room ready for
shipment but unmarked 2s to size, production rus, or other identification. The
company produces three sizes of screws having lengths whose means and standard
deviations are, respectively, 5and 1.5,6and 2.5,and 8 and 4 in. The company
must decide what to do with the case of screws; there are costs iavolved in
sending the case if it is not the size ordered and costs involved in discarding the
case These costs (including loss of good will 2nd partial replacements costs when
relevapt) are givea by the following matrix:

Shipasp=5
Shipas p =6
Shipaspu=38
Discard
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¢ (a) Assuming that the screws are equally likely to be each of the three sizes, what N Cousi
should the Blue Bolt Company do to maximize its expected value? (b) Assuming o proba
that the lengths of cach size of bolts are normally distributed what should the -
company do if 2 random sample of 100 bolts has 2 mean length of 6.8 in.? (Consider
6.8 as including the interval 6.8 + .1 to solve the problem of continuity;—this can
be justified on the basis of errors of measurement).
(2) The company would ship the screws to fill an order for screws having an Ship ¢
average length of § in, since this decision has the minimum expected toss (given L
at the side of the above table). Stiip ¢
(b} Given the sample of size 100 with ® = 6.8 in., the probability of this sample
coming from the three possible distributions would be calculated 25 follows Ship <
n =100 . Disca
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Considering the decision payoff matrix in view of these revised (posterior)
probabilities, we have

‘ 4 4 36
u=6 wu=6 p=8 Expected value
Shipasp = § 0} —300| —50]| —472
Shipaspu =6 | —1600 0| —400 | —344
Shipaspy=8 | —2000 | ~1800 0| -282
Discard —1000 | —1200 | —1500 | —1458

So the company would ship the screws to fil an order for screws having an
average length of § in.

16.3 TESTING SCIENTIFIC AND STATISTICAL HYPOTHESES

A statistical hypothesis is a statement about the distribution of a random
variable; most statistical hypotheses concern the value of a parameter of 2
distribution of known or assumed form, although some hypotheses concern the
form of the distribution itself. A test of a statistical hypothesis is a procedure for
deciding whether to accept or reject the hypothesis on the basis of the outcome
of a random experiment—that is, on the basis of the observed value of a random
variabie.

The use of a random experiment to test a statistical hypothesis is based on
an extension of the method of testing scientific hypotheses by nonrandom
experiments. For centuries, hypotheses in the physical sciences have been tested
by cxperiments. Galileo reportedly dropped 2 large and a small cannon ball
from the leaning tower of Pisa in order to test the hypothesis that two objects of
different weights fall at the same speed. His hypothesis was supported by the fact
that the cannon balls did in fact strike the ground at nearly the same instant.
More recently and more spectacularly, Einstein's hypothesis that energy equals
mass times the square of the speed of light was supported by the explosion of the
atomic bomb. .

The logic of testing scientific hypotheses by nonrandom experiments is as
follows: According to the hypothesis, a specific result should occur or an
observable quantity should have a specified value. If the occurrence predicted
by the hypothesis is obscrved when the experiment is performed, then the
hypothesis is supported. It is not proved, however, since there may be other

_~hypotheses that make the same prediction. This procedure is based on the
assumption that the experiment is performed precisely as required to test the
hypothesis and that there is no error in measurement or observation—that is, it
is based on the assumption that there is a “critical experiment” for the hypothesis.

Even under ideal circumstances with regard to conduct of experiments and
precision of measurement, a theory ot hypothesis can never be proved. As data
consistent with a theory or hypothesis accumulate and contradictory data are
not observed, the theory or hypothesis is supported and may even eventually be
regarded as proved for practical purposes. However, one counterexample or one
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nd, the caleulation of £(D, ), E(D;), and E(D,) did not require conducting
1y puysical experiment. This procedure is frequently called preposterior : the procsss
lows concsptual treatment of the problem before you have 10 make 2 decision.
Third. the cost of sample information (or the cost of testinga switch) was given.
4a payoffs associated with d,, d, dy, and d, incorporated the $5-per-switch cost of
sting. Frequently, decision problems will not have that .information, and the
sestion is: What is the maximum amount the decision maker should pay for sample
mperfect) information? - i 2 oo NI

S . - W
1.6 EXPECTED VALUE OF SAMPLE

- e Gy i G T LT
a example will serve to demonstrate the basic procsss for evaluating the expected

ive of sample information.: =

Example 14.2 A Souvenir Tennis Prog e -
Ms. Robbic Biggs has_the exclusive rights to produce “the souvenir pamphlet” for a
challenge teanis match. Two months before the match Ms. Biggs had 5,000 copics of the
souvenir program printed at a cost of $5,200. . BRI

The program includes the rules for the match, scorc sheet, and some teanis history,
but the program is primarily a biography of the players. The 52 per copy sale price was .
boldly printed on the cover. Three weeks before the match, a general sports magazine
prints 2 biographical sketch of the players that essentially duplicates the matcrial in the
souveair program. Ms. Biggs is di d and the probabili d
with the levels of sales for the program- . - - -

Ms. Alacrity offers to pay Ms. Biggs 56,200 for the souvenir programs and the

usive rights to distribute them. Mr. Fondant offers to pay Ms. Biggs 56,100 and 20

percent of any profit All agree that the program will sell for $2 per copy. Ms. Biggs is
faced with the following decisions:  ~ L . :

D, - Sell rights and printed copies to Ms. Alacrity

Dy Setl rights and priated copies to Mr. Fondant
Dy: Keep rights and sell them herself

TABLE 14.10 PAYOFF TABLE ($ PROFIT} FOR MS. BiG3S

Daeclsions
Ma. Blggs’ Numbar —— .
Probability ot Copien Seil to Salil to Sall Them
Acsasament Damanded Atacrity Fondaat  _ Merself
PSON) SON, D, Dy T Dy
0.50 2000 1000 900 —~L200 _
020 3,000 1,000 900 300
0.20 4000 1000 L280 .. . . 2300
0.10 5,000 1600 1,680 4,300
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- e
Ms. Biggs coasiders only four possible states of pature: 2,000 copics, 3,000 copict T
4,000 copics, or 5,000 copies will be sold. If she takes Ms. Alacrity's offer, Ms. Biggs will
receive $6,200 — $5,200 = $1,000 profit regardless of the aumber of souvenir pr
sold. - . -
If Ms. Biggs sells the programs berself, ber profit function is:

_ Profit - (52 per cé[;y)(numbe { copi
For the four states of nature, the profits are shown unde‘r Dy in Tabie 1410, 3
For 2,000 copics sold, there is a loss. If Mr. Fondant's offer is accepted, M. Biggs®
will receive $6,100 — $5,200 = $900 profit for that state of pature. If Mr. Fondant
makes a profit, then Ms. Biggs will receive N — L

$900 + (020){(S2)(mumber of copies sold) — $6,100]

or $900 plus 20 percent of Mr. Fondant's profit. If only 3,000 copics are sold, then Mr.
Fondant’s revenue is $6,000, but his costs were $6,100. If 4,000 copies are sold, then Mr.
Fondant's profit is $8,000 ~ $6,100 = $1,900, of which 20 percent is $330; thus, Ms. Biggs -
would receive $900 + $380 = 51,280 in profit . .
From Tabic 14.10, the minimax decision i D, and the maximax decision is D;...
From the expected-value calculations in Table 14.11, the optimal expected value is 31,054
(cecall that optimal is “maximum " in this problem because the payofls are “profis ™).

TABLE 14.11 EXPECTED VALUE CALCULATIONS . | B .

ASON) D, o, b, (1) x (2) (1) x () {Nx(4) ASON}-(V_|SON) -
m @) [e)] 14} s} ® m ® - 77
050 1000 00  -1200 0 40 -60 500 -
020 1000 9500 300 200 180 160 200
00 1000 1280 2800 00 256 560 560
0.0 1000 1,680 4,800 100 168 480 430

L1000 1,054 600 1,740
ED) ED) . ED) E(CP)

Since the expested value of certain prediction is $1,740, then the expected value of
perfect information is N

E(PI) = 1740 — 1054 = 5686

Now, Jet us introduce another wrinkle in Ms. Biggs’ decision problem. Most of
the ticket sales for the match were transacted by mail A marketing research firm
offers to randomly select a sample of n persons from this population, find out how

many of thos.
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many of those n people will buy a souvenir program, and report the results to Ms.
Biggs. How much should she pay for that sample information? Certainly not more
than $686, the expected value of perfect information. Pethaps we can obtain a better
evaluation of the worth of imperfect information. -

First, let us make the following assumptions:

1. There will be 10,000 people attending the tennis match.

2. The proportion of attendecs who will buy a souvenir program is repre-
sented by n. R

3. The proportion of mail-order ticket recipients who will buy 2 souvenir
program is also equal to &

4. Ms. Biggs' assessment of the states of nature is correct. (That is, exactly
2,000, 3,000, 4,000, or 5,000 programs will be sold.) -

5. A sample of size (n=) 4 will be selected from the mail-order ticket
recipients. . -

6. Although the sample will be selected without replacement, the sample size is
so small relative to the population size that binomial probabilities can be
used to calculate the probability of the various sample results.

Second, let us define Dy as the “sample of size 4 plan.” That is, the marketing
research firm will sclect 2 random sample of size 4 ahd report to Ms. Biggs that cither
zer0, one, two, three, or four of those people will buy 2 souvenir program. Based
upon what they report, Ms. Biggs will choose the decision (ie, sell cights to Ms.
Alacrity, sell to Mr. Fondan, or kecp the rights) with the highest expected value. To
keep track of all this, consider the decision tree in Figure 14.4.

Finally, let ,d, = decision D, given the sample result that k people will buy the
souvenir program. Then, the expected value for ,d, is

E) = S0~ PSONK]

where P(SON,|k) is the posterior probability. For example, the probability that
5,000 copies will be sold (SON,) given that {k = 2) two of the four people sampled
will buy the souvenir program is P(SON, |k = 2). To obtain the posterior probabili-
ties (via Bayes’ rule), we nced the conditiopal probabilities: P(k|SON;). Using the
assumptions stated above, we can usc the binomial probabilities from Appendix
Table I1I for the conditiona! probabilities. .

How? If 2,000 people will buy the program, which represcats SON,, then
& = 2,000/10,000 = 0.20. Since n = 4,

P{k|SON,) = P(k|x =020, = 4)

In gencral, P(k|SON)) = P(k|r = SON/10.000, n = 4). Table 14.12 presents th
appropriate binomial probabilities [rom Appendix Table II. .
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TABLE 1413 POSTERIOR PROSABILITY AND EXPECTED-VALUE CALCULATIONS J i TABLE 14.14 EXP
: SAMPLING COSTS)
APriori  Conditional . N $ —_—————
Probability  Probability Joint Posterior  Payoft  ELd)  Peyot B4 3
P(SON) P{k|SON) Probability Probability from 0, Caleu- trom D, Caicu- H
Table Tueble Pk~ SON) P(SON/jk)  Tabie fation Table Semple Result |
14.10 14.12 (1) x(2) (3} + Pk} 14.10 (4) = (8) 14.10 k
m @ @ “ ) ] @ i (&
=0 o 0
0s0 04096 02048 07186 %00  ees74 120 -gzn . " H 1
020 02401 00480 0.1684 50 15156 300 13472 + - Y
020 01296 00259 00909 1280 11635 2800 25452 3
0.10 00625 00063 00221 1,680 3713 . 4300 10608 "
P(k=0) = 02350 10000 E{ody) = S9SLT8  Eldy) = —367.00
k=1
050 0.4096 02048 05372 900 48348 -1700 —64454 Wi .
020 0.4116 00823 02159 900 19431 0 mn _ Without sampli
020 03436 00691 0.1813 1,280 23206 2800 50754 selling to Mr. Fonda
0.10 02500 00250 00656 1,680 11021 4800 31428 to pay for the sampl
Plk=1) = 03812 10000 E(,d;)=$102006  E(d;} = 15060
( Max;
=2 of samp
: 050 0.1536 00768 03250 900 29250  -1200 —39000
: 020 02646 00529 | 02239 900 0131 w0 a2
[ 03456 00691 0924 1280 37427 280 81872
010 03750 00375 0.1587 1,680 26562 4300 76176
Pk=2) = 02363 10000 E(yd,)=SLI34S0  E(;d;) = 136960
s : If the cost of sa
030 00256 ao1z8 01531 %0 1377 -L200 -7 criterion : ould suge
020 00756 00151 0.1806 900 16254 800 14448 firm to obtain the sa
020 01536 00307 03672 1280 4002 2300 102816
010 02500 00250 0299 L680, 0232 4300 143520 k=0
Plke3) = 00836 09999 E(ydy)=SL27267  E{ydy) = 242412 k=1
kmd k=2.
050 00016 00008 00580 900 5220 ~120 -6960
020 00081 00016 0.1159 900 10431 B0 9272 If the cost of st
020 00256 00051 03696 1280 47309 2800 103438 .
0.0 00625 00063 04565 L6SO 76692 40 21910 expected value criter
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TABLE 14.14 EXPECTED VALUE OF SAMPLE PLAN (EXCLUDING
SAMPLING COSTS) -

Probabllity of  Optimal Expected Value

Sampls Result Given Semple Result Expacred Value
Samgple Result {Table 14.13) (Figure 14.4) Calculation
3 0] [Eud e (2 x @3}
e @ & [0)
0 02850 100090 (d;) s 28500
1 03812 102006 (dy) 8835
2 0.2363 136960 (dy) 32364
3 00836 24412 (d5) 20266
4 00138 324920 (dy) s
- e
09999 $1.2499 = E(DJ)

xpected value is associated with

Without sampling information, the optimal e
Ms. Biggs would be willing

selling to Mr. Fondant, E(D;) = $1,054. Thus, the most
to pay for the sample information is

( Maximum value ) - optimal expected valuc\
of sample information with sample information

_ ( optimal expected value
without sample information

= $1,24499 — §1,054.00 = $190.99

an $190.99, then the optimal expected va.iue

If the cost of sampling is less th
decision rule. Engage the marketing research

criterion would suggest the following
firm to obtain the sample information. If they report

k=0 then sell rights to Ms. Alactity
k=1 then sell rights to Mr. Fondant
k=23 0r4 then Ms. Biggs should keep the rights

If the cost of sampling is more than $190.99 for a sample of 4, the optimal
expected value criterion would suggest that Ms. Biggs scll the rights to Mr. Fondant.

Note that this analysis is only specific fora sample of size 4. Consider n = 5. For
n = 5, we would start with the binomial probabilities for n = 5 and reconstruct Table
14.12. Then for each sample result (that is, k=0, 1, ..., 5), Table 14.13 would be
recalculated. As in Table 14.14, we would use the optimal expected value for each
sample result and P(k} to find-E(Ds)-
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In general, the expected value for “aplanusinga sample of size n~ will vary with
the size of the sample, of E(D,) = f(n). Also, the cost of sampling usually varies with
the size of sample, or C. = g(n). Let E(D}) represent the optimal expected value of
those decisions which do not use sampling information. Then the net expected gain

from sampling (NEGS) is

NEGS = E(D,) — Ca— E(D})

which varies with n, the size of the sample.
1f, for all values of n, NEGS is less than 0, then the optimal expected value
criterion yields Df as the optimal decision (ie, do not sample).

17 NEGS is greater than 0 for one or more values of n, then the optimal expected
value criterion suggests that you should use sample mformation and use a sample
size that provides the largest value of NEGS. Hence, the procedures discussed above
not only assess the expected value of sample information but also provide a basis for

deciding what size sample should be employed.

SUMMARY

This concludes the introduction to Bayesian Jecision analysis. The essential power of
this logic, or technique, should be obvious. Most of the material in the precediog
chapters can be classified as *classical statistics.” The techniques in this chapter
share some of that material, but there are differences which have fired controversy-.
That controversy bas produced both heat and light For those who progress beyond
the scope of this book, do not ignore the light of Bayesian analysis.

. In retrospect, the logic of (1) identifying what could happen (the states of
nature), (2) deciding what alternatives the decision maker has {the decisions), and (3)
measuring the payoff for cach decision, given a state ol

f nature, in units that are most
appropriate to the goals of the decision maker, scems almost trivial. But implement-
ing that logic foroes the decision maker to be very explicit about the problem. And, as
we have seen, the payoff table is orly the beginning- -

Assigning a value to the probability of occurrence for each state of nature may
require the use of subjective probabilides.‘rhere are techniques (not covered hege) for
checking the decision ‘maker's * degree of belief.”
Bayes’ rule is 2 device for revising those initial probability assessments in the

light of sample information. Finaily, the expected value of information {either perfect
id 1 hanism for evaluat sample information

or imperfect) P a P
before that information is obtained-
Remember, this is only an introduction—an

those who seek it, there is more.

overview and 2n enticement. For
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Values for Outcomes

In order to compare guantitatively the two options in the decision. we need to
assign values to each of the three outcomes. Notice that the decision tree above already
serves an important purpose even if we stop before assigning values: the tree shows
clearly all the various factors and data which should be included as our subject tries 0
make a decision. Thus, the decision tree helps 1o organize our thinking about a problem.

In decision-tree problems, it is common {but not necessary) to assign values for
the various outcomes in the range 0-100. If we follow this practice.

"Death” obviously has the value 0
*0.K. without treatment” has the value 100.

The question is what value to give "O.K. with treatment” -- this is obviously less
than 100 (the treatment is painful and coslly}. but far more than 0.

There are various techniques to decide on this unknown value, but basically it is
the guestion of personal judgment. To continue the analysis, we select the value 80.
(Later we may want to study how sensitive the decision -is to this particular value.)

We now have the complete decision tree, shown below.

599/600
) CK. with

treatment

Death

No
treatment

Values shown encircled

Finding the Optimum Declsion

To find the optimum decision, we determine the expected value for each of the two
options by working backward from the outcomes toward the decision point.



