
The Elements of Regression Analysis

R.G. Hollister

I. Objective
My objective in these notes is to introduce the basic elements of

regression analysis in as direct a fashion as possible, emphasizing,
wherever possible, more intuitive ways of looking at estimating
procedures and eschewing most of the refinements of underlying
theory.

The objective of regression analysis is to determine approximative
systematic relationships of many variables, given the joint distribution
of two or more variables.

II. Means, Conditional Means, and Simple

Regression

A. Mean
Given a distribution of a variable, we often wish to select a ”most

representative,” ”most likely,” or ”expected” value for that variable.
Since the variable is distributed over a range of values, we know any
single value we choose will often be ”misrepresentative” of the ”most
likely” value of any single observation we might pick from the
distribution. Thus we like to select the value which minimizes the
”misrepresentativeness” or ”error.”
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Let us call the value we select the estimator of Y which we will
label E(Y). We use the notation of Y i for any single value selected
from the distribution of values of Y. When we choose E(Y) as the
estimator for the value of Y, the error we make in using E(Y) for any
Y i is:

Ý0.1Þ e i = ßYi ? EÝYÞà

The extent to which the estimator E(Y) is ”misrepresentative” over
the whole distribution of Y might be represented by the sum of the
errors for each observation, e.g., with n observations:

Ý0.2Þ >
i=1

n

e i = e1 + e2 + e3 + ...en

The problem is to develop a criterion by which to select a ”best”
value for E(Y). One reasonable criterion would be to choose E(Y) so
as to make the sum of errors, as small as possible. Therefore, a
criterion of choosing E(Y) so that:

Ý0.3Þ >
i=1

n

e i = 0
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would seem reasonable.
We can write:

Ý0.4Þ >
i=1

n

e i = >
i=1

n

ßYi ? EÝYÞà = >
i=1

n

ßYi ? nEÝYÞà

since E(Y) is a constant which enters with the same value in each
of the n terms of the summation. We can write (0.3) as:

Ý0.5Þ >
i=1

n

e i = >
i=1

n

Yi ? nEÝYÞ = 0

Solving for E(Y), we get:

Ý0.6Þ EÝYÞ =
> i=1

n Yi

n

which is the average or mean value for Y. Therefore our
justification for using the mean as an estimator is that it gives us the
smallest absolute value of the sum of errors over the whole
distribution. We note in passing that another criterion might be to
choose E(Y) so that it gives a minimum for the sum of squared errors,
> i=1

n e i
2. Using calculus we get:

Ý0.7Þ min>
i=1

n

e i
2 = >

i=1

n

ßYi ? nEÝYÞà2 = 0

Ý0.8Þ
> i=1

n e i
2

dEÝYÞ
= ?2>

i=1

n

ßYi ? EÝYÞà = ?2 >
i=1

n

ßYi ? nEÝYÞà = 0

and solving for E(Y):

Ý0.9Þ EÝYÞ =
>Yi

n

Therefore, the mean,
> Yi

n , is the value that minimizes the sum of
the squared errors as well as the absolute value of the sum of errors. In

subsequent notation we will often refer to
> Yi

n by the notation Y.
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B.The Conditional Mean
Now, if for each observation we take note of two characteristics,

we have distributions for two variables tied together by their
association with the common observation points (Yi, Xi) - this is a joint
distribution of the variables Y and X. We wish to look at relationships
between the two variables in the joint distribution. We can represent
their joint distribution by a scatter diagram.

We could simply look at the mean of each distribution , X,Y.but
this wouldn’t tell us much about how one varies as the other varies.
We would prefer to know, for example, given a value of X, X i, what is
the ”likely” value of Y. We can talk about the ”likely” value of Y given
X i as the ”conditional expected value,” EÝY P X i Þ . For example:
given a person’s age, what is the most likely value of their income? We
might anticipate, following the reasoning from the previous section,
that the best estimator is the conditional mean of Y given X.

We can think of the scatter diagram as giving a separate
distribution of each value X i, as in Figure C.
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The function which gives the ”conditional expected value of X”, as
indicated in Figure C is sometimes called the ”cell mean function.”

We may wish to generalize the relationship between the expected
value of Y and given value of X in a somewhat handier form than
provided by the ”cell mean function.” To do this, we make some
assumption about the form of the relationship between Y and X. The
simplest assumption is that it is linear.

Ý0.10Þ EÝY P X i Þ =
å
Y i = a + bX i

(Other forms can be assumed and the logic of estimation carried
out in a similar fashion). As indicated in Figure D, the linear regression
function can be thought of as a simplification of the ”cell mean
function.”

5



If we used the ”cell mean function” we would have to calculate a
separate conditional mean for each value of X i. This would be
cumbersome both to calculate and to use for analysis. Using the linear
regression line we need select only two values: a, the intercept, and b,
the slope of the line.

The linear regression is not quite as accurate as the ”cell mean
function” but it is easier to calculate and handle.
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C. Simple Regression
The observed value of Y i from the observed joint distribution

(Y i,X i) will differ from the value predicted from the linear regression
function, Y i = a + bX i, just as, in the case of the single distribution, the
observed value Y i differed from the predicted value E(Y). Thus the
”error”:

Ý1.1Þ e i = ÝYi ?
å
Y iÞ = ÝYi ? a ? bX i Þ

Now, following the analogy to selecting the best value for E(Y),
we would like to pick the ”best” value for Yi. Since Y i = a + bX i, the
problem is to choose the ”best” values for a and b.

Following the analogy to the case of the mean above, one
reasonable criterion would seem to be to choose the values so that
> i=1

n e i = 0. Thus,

Ý1.2Þ > e i = > Yi ?
å
Y i = >ÝYi ? a ? bX i Þ = > Yi ? na ? b>X i = 0

However, there are lots of combinations of values a and b which

satisfy equation (1.2). Consider, for example, a=
> Yi

n and b=0.
Substituted in (1.2):

> e i = > Yi ?
>Yi

n ? 0ÝX iÞ = > Yi ? n
>Yi

n = 0

Diagrammatically this function would look like Figure F1:
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This is clearly not a very good estimating function. We see that
though the summation of errors is zero,(> e i = 0Þ , this is achieved
because positive errors to the right of Xcancel out against the negative
errors to the left of X .

In Figure F2, we show a particular observation (Y i,X iÞand how the
error is the difference between the regression line point for (Y i,X i)and
the actual value of Y i.

8



We can see that with the regression function using a=
> Yi

n and
b=0, most of the observations to the right of X,will have positive errors
(e i > 0Þ, while most of the observations to the left of will have
negative errors (e i < 0Þ. Now multiply each value of X i times the error
associated with it for the given regression line, i.e., e iX i. Take the sum
of e iX i, > e iX i. Since the values of X i to the right of X are larger than
those to the left of X i, the predominately positive values of e i to the
right of X are multiplied by larger values than the predominately
negative values of e i to the left of X, and > e iX i will be positive. Thus
when the regression line as in Figures F1 and F2 is clearly too flat,
relative to the observations,

Ý1.3Þ e iX i > 0

If the regression line had too sharp a slope, as indicated in Figure
F3, since large values of X to the right of X multiply mostly negative
values of e i and small values of X to the left of X multiply mostely
positive values of e i,

Then, in general, the errors to the right of would be negative, to the
left of , the errors would be positive. Since, in general, in , the negative
errors would be multiplied by larger values of than the positive errors
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we would expect that:

Ý1.4Þ > e iX i < 0

If we are to avoid both a regression line too flat and one too steep,
it seems reasonable to impose a second condition that:

Ý1.5Þ > e iX i = 0

= >ÝYi ? a ? bX i ÞX i = >ÝYiX i Þ ? a>ÝX i Þ ? b>X i
2 = 0

If we now combine equation (1.2) and equation (1.5) as conditions
to be met, we have two equations with the two values to be selected, a
and b, in them. We recall from algebra that, in general, two equations
will uniquely determine two unknowns, so we can solve (1.2) and (1.5)
simultaneously for the values of a and b.

Multiply (1.2) by >X i and (1.5) by n to get:

Ý1.6Þ > Yi >X i ? na>X i ? b >X i
2
= 0

n> YiX i ? na>X i ? bn>X i
2 = 0

Subtracting the first equation from the second we get:

Ý1.7Þ n> YiX i ?> Yi >X i ? bn>X i
2 + bÝ>X iÞ2 = 0

Solving for b we get:

Ý1.8Þ b=
n>YiX i ?>Yi >X i

n>X i
2 ? Ý>X iÞ2

Rearranging equation (1.2) we see:

a =
>Yi

n ?
b>X i

n

and we can substitute b from equation (1.8) into equation (1.9) to
get the expression for a.

We have thus arrived at a choice of values for the regression line

10



parameters a and b by imposing the conditions > e i = 0 and
> e iX i = 0. We now show quickly that if we adopted the criterion of
choosing a and b so as to minimize the squared error, we would arrive
at the same estimates. Working from equation (1.1) we get:

Ý1.10Þ > e i
2 = >ÝYi ? a ? bX iÞ2

Minimizing equation (1.10) with respect to a and b we get:

Ý1.11Þ
/> e i

2

/a
= ?2>ÝYi ? a ? bX i Þ = 0

/> e i
2

/b
= ?2>ÝYi ? a ? bX i ÞX i = 0

which can be rewritten as:

Ý1.12Þ 0 = > Yi ? na ? b>X i = 0

0 = > YiX i ? a>X i ? b>X i
2

But these are exactly the same as equations (1.2) and (1.5). These
are often referred to as the normal equations of the least sum of
squares regression. Solving these for the values of b and a, we would
get the same expressions as equations (1.8) and (1.9). From the
intuitive development of equations (1.2) and (1.5), we can see why the
least sum of squared errors criterion is utilized. The criterion of
minimizing the absolute sum of errors is not sufficient alone. There are
many values for a and b which will give > e i = 0 because large
positive errors in the sum cancel out large negative errors (in fact any
line passing through this point Y,X will meet this criterion). Thus we
need an additional criterion to pick the ”best” estimator from among
these many. The estimator values of a and b which cause > e iX i = 0
will give a line which is neither too flat nor too steep. When we use the
overall criterion of minimizing the sum of squared errors, since the
errors are squared before summing, positive and negative errors don’t
cancel out the summation. When we minimize the sum of squared
errors, we arrive at these two conditions. The two conditions give two
equations in two unknowns which can be solved for unique values of a
and b. This then is the method of least squared error simple regression.
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It defines the linear relationship between Y and X which minimizes the
sum of the squared errors made when that line is used to estimate a
value of Y, (Y iÞ, for any given value of X, X i.

D. Regression in Deviation Notation and
Moment Notation

It is useful to transform some of the relationships above into a
”normalized” form by redefining the variables in the joint distribution
in terms of deviations from the mean.

Ý2.1Þ yi = Yi ? Y

Ý2.2Þ x i = X i ? X

Taking equation (1.2) dividing by n and transforming, we get:

Ý2.3Þ
>Yi

n = a +
b>X i

n or Y = a + bX

Transforming equation (1.1), we get:

Ý2.4Þ Y i = a + bX i + e i

Substituting (2.3) and (2.4) into (2.1),

Ý2.5Þ yi = Yi ? Y = Ýa + bX i + e i Þ ? a + bX = b X i ? X + e i

= bx i + e i

Thus,

Ý2.6Þ e i = Ýy i ? bx i Þ

and

Ý2.7Þ > e i
2 = >Ýy i ? bx i Þ2

Minimizing (2.7), we get:
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Ý2.8Þ
/e i

2

/b
= ?2>Ýy i ? bx i Þx i = 0

Ý2.9Þ > y ix i ? b> x i
2 = 0

which is equivalent to:

Ý2.10Þ > e ix i = > y ix i ? b> x i
2 = 0

Solving for b:

Ý2.11Þ b=
> y ix i

> x i
2

Of course equation (2.10) is equivalent to equation (1.5) and
equation (2.11) is equivalent to equation (1.8).

Note that in deviation form, the parameter a disappears from the
regression line. This is because in transforming the observations to the
deviation-from-the-mean form, we have in effect shifted the axis from
the point (0,0) to the point, X,Y as indicated in Figure G.
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v
Therefore in the deviation form of the regression line, the intercept,

a, is by definition equal to zero.
These expressions in deviation terms can be written in terms of

moments about means, and the moment notation sometimes simplifies
presentation. The first moment about the mean is defined as:

Ý2.12Þ Mx = > X i ? X = > x i

The second moment for a single variable distribution is:

Ý2.13Þ Mxx = > X i ? X X i ? X = > x i
2

The second moment for a joint distribution of two variables X and
Z is defined as:

Ý2.14Þ Mxz = > X i ? X Z i ? Z = > x iz i

We can rewrite equation (2.9) in moment notation as:

Ý2.15Þ Myz ? bMxx = 0

and equation (2.11) can be rewritten:

Ý2.16Þ b= Mxz
Mxx

III. Multiple Regression
Thus far, we have developed our discussion of regression analysis

around the idea of getting an estimator of a particular variable Y which
will give us the most likely value for any given observation. We noted
that while the mean is a good estimator, if we have some information
about another characteristic, X, associated with a given observation, i,
we can do better in predicting Y by using the conditional mean
EÝY P X i Þ, and we approximate this with a simple linear regression
equation. By the same logic, however, if we know more than one
characteristic, say X1 and X2, we should be able to do even better in
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predicting Y by estimating the conditional expectation EÝY P X1i,X2i Þ .
This is one reason for going on to develop multiple regression analysis.

Another reason we may be interested in regression analysis is that
we are interested in the impact of a given independent variable, say X1,
on the dependent variable Y. Thus, our interest focuses on equation
(0.10) for example, not so much of E(Y P XÞas on the slope coefficient
b which tells us how a change in X of one unit is likely to change Y. If
we are interested only in the effects on X1 on Y it might seem that the
simple regression we have already developed might be sufficient, but
this is not so. The reason it is likely to be insufficient is that other
factors, say X2, which are systematically related to Y, may also be
related to X1. If this is the case, the effect we estimated by a simple
regression of Y on X1 alone may be misleading. X1 may be ”taking
credit for” some of the effects on Y which are really due to another
factor, X2, with which it is partially related. For example, suppose Y is
test scores of students in elementary schools and we are interested in
the effect of per pupil expenditures X1 on test scores. A simple linear
regression would give us an estimate, e.g., b in equation (2.5), of the
effect on test scores of a dollar increase in per pupil expenditure.
Would this be a reliable estimate of how much test scores would be
likely to rise if we raise expenditures one dollar? Well, we also have a
general impression that children’s test scores are related to family
background, say as measured by family income, which we will call X2.
We also know that since schools are financed by the property tax,
communities with higher than average family incomes are likely to
have higher than average expenditures per pupil. That means X1, per
pupil expenditure, and X2, family income, are likely to be positively
related. How can we be sure that when we estimate the simple
regression of Y, test scores, and X1, per pupil expenditure, we are not
really getting an estimate of the relation of X2, family income, to test
scores?

We would wish to separate the effects of X1 on Y from the effects
of X2 (and other independent variables) on Y, in order to be able to
estimate the ”true” net effect of X1 on Y. Since the problem is that X1

and X2 (or other independent variables) are interrelated, it would seem
logical to first take account of the relationship of X1 to X2 (and others)
and then take that part of X1 that is not related to X2 (or others) and
see what effect it has on Y. This is the essential logic we will use to

15



develop multiple regression estimates. (Then we will come back and
derive them by the least-squared error criterion to get and show the
estimators are the same).

Let us take the case of a joint distribution of three variables: Y i,
which we’ll treat as the dependent variable, and X1i and X2iiWe wish
to estimate the linear multiple regression function:

Yi = a + by1.2 X1i + by2.1 X2i + ey.12i

which we rewrite in deviation form:

Ý3.1Þ Yi = by1.2 X1i + by2.1 X2i + ey.12i

In the notation used here, the subscripts before the dot indicate the
relationship of the coefficient represents and the subscripts after the dot
indicate the other variables controlled for elsewhere in the estimating
equation. For example, by1.2 , is the independent, or ”net”, effect of x1

on y, controlling for the influence of x2 on y. For the error term , the
notation indicates that this is the estimated error in y for observation i
once we have allowed for the estimated systematic effect of x1i and x2i

on y.
Now, following the logic sketched out above, we first take account

of any systematic relationship between the independent variables by
estimating a simple regression relating x1 and x2.

Ý3.2Þ x1i = b12x2i + e1.2i

We will call this equation the auxiliary regression. Following our
notational convention, b12 is the estimated relationship between x1 and
x2 (since no other variables enter the relationship in (3.2) there is no
dot in the subscript for b).

From the formulae (2.11) and (2.16) developed for simple
regression, recalling that in this case x1 is the dependent variable and
x2 is the independent variable, we can write down direct the
expression for b12 in (3.2):

Ý3.3Þ b12 =
> x1ix2i

> x2i
2 = Mx1x2

Mx2x2

and then rewrite (3.2) as :
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Ý3.4Þ e1.2i = x1i ? b12x2i = x1i?
åx 1i

We see that e1.2i is the residual value of x1 for observation i after
we subtract out åx 1i, that part of x1i which is systematically related to
x2i.

Now we can treat e1.2 itself as a variable which varies from one
observation to another. To facilitate understanding of this use of e1.2 as
a variable, it may be useful to think of the basic data array using
hypothetical numbers written in a table as follows:

ObservationNumber Y X1 X2

1 79.0 19.5 83.1

2 71.0 18.0 74.4

3 61.3 14.7 63.8

4 49.3 11.4 48.7

5 51.9 12.2 52.0
If we estimated (3.2) for this data, we obtain:

x1i = .24x2i + e1.2i

Using this relationship in equation (3.4), we can generate e1.2i

values and have a new data array:
ObservationNumber Y X1 X2 e1.2

1 79.0 19.5 83.1 ?.03

2 71.0 18.0 74.4 .55

3 61.3 14.7 63.8 ?.61

4 49.3 11.4 48.7 .12

5 51.9 12.2 52.0 .13
e1.2i gives us the sort of variable we seek to estimate the net effect

of x1 on Y since it represents variation in x1 across observations which
is unrelated to variation in x2 across observations. e1.2i is sometimes
referred to as the orthogonal part of x1.

Using e1.2, we can now estimate a simple regression relating it to
y:
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Ý3.5Þ by1.2i
e1.2i + eyÝ1.2Þi

We use the parenthesis in the subscript to remind us that we are
using a variable developed via the auxiliary regression (3.2).

Once again, applying directly the simple regression formulae
(2.11) and (2.16), we can write down the expression for the coefficient
by1.2 :

Ý3.6Þ byÝ1.2Þ =
> y ie1.2i

> e1.2i
2 = My,e1.2

Me1.2,e1.2

byÝ1.2Þ is an estimate of the relationship of y to x1 net of any indirect
influence on Y of x2 operating through x2’s relationship to x1. This is
because in creating e1.2i we purged x1 of a part systematically related
to x2.

Now we do some rewriting of (3.6) to get it into a form readily
comparable to the usual textbook formula for a multiple regression
coefficient.

First, rewrite the numerator of (3.6) using (3.4)

Ý3.7Þ > y ie1.2i = > y iÝx1i ? b12x2i Þ

Ý3.7aÞ = > y ix1i ? b12 > y ix2i

Substitute (3.3) for b12:

Ý3.7bÞ => y ix1i ?
> x1ix2i > y ix2i

> x2i
2

In moment notation:

Ý3.7cÞ =Myx1 ?
Mx1x2 Myx2

Mxcx2

Now, rewrite the denominator of (3.6) using (3.4):
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Ý3.8Þ > e1.2
2 = >Ýx1i ? b12x2i Þ2

= > x1i
2 ? 2b12 > x1ix2i + b12

2 > x2i
2

In moment notation:

Ý3.8aÞ =Mx1x1 ? 2b12Mx1x2 + b12Mx2x2

Substitute (3.3) for b12:

Ý3.8bÞ = Mx1x1 ?
2Mx1x2 Mx1x2

Mx2x2

+
Mx1x2

2 Mx2x2

Mx2x2

= Mx1x1 ?
Mx1x2

2

Mx2x2

Now substitute into (3.6) the expression for the numerator (3.7b)
and the expression for the denominator (3.8b) to get:

Ý3.9Þ =Myx1 ?
Mx1x2Myx2

Mx2x2

Mx1x2 ?
Mx1x2

2

Mx2x.2

= Myx1 Mx2x.2 ? Mx1x2 Myx

Mx1x.2Mx2x.2?Mx1x2
2

We have developed an expression for the relationship of y and x1

by ”netting out” or controlling for x2 through the auxiliary regression.
Now we derive an expression for the multiple regression coefficients
by1.2 in (3.1), using the alternative logic of minimizing the squared
errors in the multiple regression equation (3.1). We transpose (3.1) to
get ey.12i on the left hand side.

Ý3.10Þ ey.12i = y i ? by1.2 x1i ? by2.1 x2i

Squaring and summing over i we get:

Ý3.11Þ > ey.12i
2 = >Ýy i ? by1.2 x1i ? by2.1 x2i Þ2

Here we may proceed by analogy to the simple regression case and
simply impose the conditions for the normal equations:
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> ey.12i = 0 > ey.12i x1i = 0 > ey.12i x2i = 0

Recall that the logic of these was that the first condition yielded the
least error by forcing the line through the joint means of Y and X, the
second assured that the regression equation did not have either too
much positive or too much negative tilt in the X1 plane, and the third
assured us the same in the X2 plane.

Or, alternatively, we can derive the normal equations by
minimizing (3.11) with respect to the coefficients, obtaining:

Ý3.12aÞ
/> e1.2i

2

/by1.2

= ?2>Ýy i ? by1.2 x1i ? by2.1 x2i Þx1i = 0

Ý3.12bÞ
/> e1.2i

2

/by2.1

= ?2>Ýy i ? by1.2 x1i ? by2.1 x2i Þx2i = 0

which, after dividing through by -2, can be written:

Ý3.13aÞ >Ýy i ? by1.2 x1i ? by2.1 x2i Þx1i = > ey.12i x1i = 0

Ý3.13bÞ >Ýy i ? by1.2 x1i ? by2.1 x2i Þx2i = > ey.12i x2i = 0

In moment notation, these become:

Ý3.14aÞ Myx1 ? by1.2 Mx1x1 ? by2.1 Mx1x2 = 0

Ý3.14bÞ Myx2 ? by1.2 Mx1x2 ? by2.1 Mx2x2 = 0

To solve (3.14a) and (3.14b) simultaneously, we multiply (3.14a)
by Mx2x2 and (3.14b) by Mx1x2 and subtract the latter from the former:

Ý3.15Þ ÝMx1x1 Mx2x2 ? Mx1x2
2 Þby1.2 = ÝMyx1 Mx2x2 ? Mx1x2 Myx2 Þ

or

Ý3.16Þ by1.2 = Myx1 Mx2x2 ? Mx1x2 Myx2

Mx1x1 Mx2x2 ? Mx1x2
2

20



which is the same as (3.9), so

by1.2 = byÝ1.2Þ

We derived byÝ1.2Þ by using the auxiliary regression (3.2) to obtain
that part of x1 which was uncorrelated with x2, labeled e1.2, and then
running a simple regression between y and e1.2, yielding the expression
for byÝ1.2Þ given in (3.9).

We derived by1.2 by a different route, using the same logic we had
used in deriving the mean as the estimator which gave us the least
error and the simple regression coefficients byx as the conditional
estimator of y given x which gave us the least error. Since in a multiple
regression equation, such as (3.1) we have more than one independent
variable, and therefore more coefficients to estimate, we have to add to
the normal equations one more equation for each additional coefficient.
In the case of (3.1), we have the normal equations
> e i = 0,> e ix1i = 0,> e ix2i = 0,which are analogous to the
normal equations for simple regression [equations (1.2) and (1.5)].
Solving these normal equations (3.13a, b) simultaneously, we obtained
the expression for by1.2 , (3.16).

Comparing the expressions for byÝ1.2Þ , (3.9), and by1.2 , (3.16), we
found they are the same. This shows that the auxiliary regression logic
and the least squared error logic lead to the same estimator for the
dependence of y on x1 which is uncorrelated with x2.

We can emphasize this concept of estimating the ”net effect” of x1

and y with a few more manipulations.
Consider the simple regression between y and x1:

Ý3.17Þ y i = by1 x1i + ey.1i

Using the expression for the simple regression coefficient
[equation (2.11)], we get:

Ý3.18Þ by1 =
> y ix1i

> x1i
2 = Myx1

Mx1x1

Similarly, from the auxiliary regression (3.2) we obtained:
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Ý3.19Þ b21 =
> x1ix2i

> x1i
2 = Mx1x2

Mx1x1

We can rewrite equation (3.14a) as follows:

Ý3.19aÞ by1.2 = Myx1 ? by2.1 Mx1x2

Mx1x1

= Myx1

Mx1x1

? by2.1

Mx1x2

Mx1x1

Substituting into (3.19a), using the moment expressions from
(3.18), and (3.19):

Ý3.20Þ by1.2 = by1 ? b21by2.1

Thus the multiple regression coefficient indicating the ”net effect”
of x1 on y is equal to the ”gross effect” of x1 on y, as estimated by the
simple regression coefficient , minus the relation between x1 and x2, as
indicated by b21, times the ”net effect” of x2 on y, as indicated by by2.1 .
The ”net effect” of x1 on y, by1.2 , will differ from the ”gross effect” of
x1 on y,by1 , by a greater amount the larger is the interrelation of x1 and
x2,b12, and the larger the ”net effect” of x2 on y, by2.1 . If x1 and x2 are
not closely related or x2 has little effect on , the ”net” and ”gross”
effects of x2 and y will differ little. This is an indication of the degree
to which the multiple regression is an ”improvement” on the simple
regression in attempting to estimate the independent effects of x1 and
y. The multiple regression ”controls for” the effects on y of x2 which
might be ”operating through x1” due to the inter-correlation of x1 and
x2. The simple regression, by ”omitting” the variable x2 in estimating
the relation of y and x1, may lead to a bias in the estimate of that
relation. We will return later in a more general discussion of bias to
this expression for the extent of omitted variable bias.

IV. Variance, Covariance, Coefficient of

Determination (R2) and Correlation (r)
(Review Beals E(x) p. 61, 86; ax

2 p. 52, 62, 63; axy p. 88,89)
We began our discussion of regression analysis by focusing on the

problem of finding a ”best estimator” E(y) for a variable Y, given that
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Y had a frequency distribution over a range of values. We showed that
the mean was the value for E(Y) which gave the least sum of errors. It
was shown it was the value for E(Y) which minimized the sum of
squared errors, > e i

2 . This sum of squared errors is a measure of the
dispersion of Y around its mean. If we divide the sum of squared
errors by n, we have a measure called the variance of Y.

ay2 =
> Yi ? Y# 2

n

When we proceed to the discussion of simple regression, we noted
we could ”improve” our estimator of Y by developing the conditional
mean E(Y# P XÞ. This ”improvement” should mean that the sum of
squared errors is less when we use E(Y P XÞrather than E(Y).

Ý4.1Þ >ßYi ? EÝY P XÞà2 < >ßYi ? EÝYÞà2

Graphically, we can illustrate the division of Y i into three parts:

At X1, the observed Y i, (PT) can be divided into the predicted
part, Y i, (TR) and the error, E i (RP).

Ý4.2Þ Yi =
å
Y i + E i

Subtract Y# from both sides to put the expression in deviation form:
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Ý4.3Þ Yi ? Y# =
å
Y i ? Y# + E i

Ý4.3aÞ y i = y + e i (PS = RS + PRÞ

Square both sides and sum:

Ý4.4Þ > y i
2 = > y i

2 + 2> y ie i +> e i
2

Ý4.5Þ y = bx i

Therefore:

Ý4.6Þ > y ie i = > bx ie i = b> x ie i

From the normal equations (2.10), we know > x ie i = 0, therefore:

Ý4.6Þ > y ie i = b > x ie i =0

Substituting (4.6a) into (4.4):

Ý4.7Þ > y i
2 = > y i

2 +> e i
2

Total sum of Squares = Regression sos + Error sos

ÝSSTÞ = ÝSSRÞ + ÝSSEÞ

Returning to equation (4.1), note that
ßYi ? EÝY P XÞà = Yi ?

å
Y i = e i.

Ý4.8Þ >ßYi ? EÝY P XÞà2 = > Yi ?
å
Y i

2
= > e i

2

From (4.7), we
see>ßYi ? EÝYÞà2 = > Y i ? Y# i

2 = > y i
2 = > y i

2 +> e i
2

Therefore:

>ßYi ? EÝY P XÞà2 = > Yi ?
å
Y i

2
= > e i

2 < >ßYi ? EÝYÞà2 = > y i
2 +> e i

2

Thus we have shown that using the conditional mean from the
regression line as our estimator reduces the sum of squared errors.

Now, returning to (4.7), divide both sides by> y i
2 :
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From (4.7) and (4.9) we can see that we can partition the total sum
of squares of Y into a portion ”predicted” by the linear regression
> yi

2

> yi
2

and a residual, sum of errors squared
> ei

2

> yi
2

.

The ”predicted” portion is called the coefficient of determination
and is usually denoted by R2.

Ý4.10Þ R2 =
> y i

2

> y i
2 = 1 ? > e i

2

> y i
2

Going back to (4.5) and squaring and summing, we get:

Ý4.11Þ > y i
2 =b2 > x i

2

Substituting (4.11) into (4.10):

Ý4.12Þ R2=
b2 > x i

2

> y i
2

Substituting for b from equation (2.11):

Ý4.12aÞ R2 =
Ý> y ix i Þ

2

Ý> x i
2 Þ2 6

> x i
2

> y i
2 =

Ý> x iy iÞ2

> x i
2 > y i

2

Take the square root:

r = R2 =
> x iy i

> x i
2 > y i

2

We define the covariance of y and x as:

ayx = > Yi ? Y# X i ? X#
n =

> x iy i
n

Thus, we can rewrite (4.13):

Ý4.13aÞ r=
> x iy i

> x i
2 > y i

2
= ayx

ax
2ay

2
= covarÝyxÞ

VarÝyÞVarÝxÞ
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r is called the correlation coefficient.
We can see that both R2 and r can take on values between 0 and 1.

Values close to 0 indicate that there is little linear relationship between
Y and X, values close to 1 indicate that Y and X are closely related.

We often refer to R2 as the ”portion of variance explained”,
meaning the portion of variance in Y ”explained by” the linear
regression of Y on X. R2 is also referred to as a measure of the
”goodness of fit” of the regression line; if R2 is high, the regression fits
the data points well, as the errors around the regression line are small.

We can derive the expression for the coefficient of determination
for a multiple regression equation. Starting from equation (3.1), we
derive Ry.12

2 , with the subscripts to indicate the two independent
variables x1 and x2.

We denote the predicted value from the multiple regression:

Ý4.14Þ y .12i = by1.2 x1i + by2.1 x2i

Multiply (4.14) by yi and sum over i:

Ý4.15Þ > y .12iy i = > y .12i y .12i + e y.12i
= > y .12i

2 +> y .12ie y.12i

Substitute for y .12iin the second term:

= > y .12i
2 +>Ýby1.2 x1i + by2.1 x2iÞey.12i

= > y .12i
2 + by1.2 > x1iey.12i + by2.1 > x2iey.12i

Since [from (3.13a, b)] > x1iey.12i = 0,> x2iey.12i = 0

= > y .12i
2

By analogy to the derivation of (4.7), we can write down without
derivation:

26



Ý4.16Þ > y i
2 = > y .12i

2 +> e .12i
2

Ý4.17Þ 1 =
> y .12i

2

> y i
2 +

> e .12i
2

> y i
2

Ý4.18Þ R2 =
> y .12i

2

> y i
2 =1 ? > e .12i

2

> y i
2

Using (4.15), we can write:

Ý4.19Þ > y .12i
2 = > y .12iy i = >Ýby1.2 x1i + by2.1 x2iÞy i

= by1.2 > x1iy i + by2.1 > x2iy i

Substituting (4.19) into the numerator of (4.18), we get:

Ý4.20Þ Ry.12i
2 =

by1.2 > x1iy i + by2.1 > x2iy i

> y i
2

While dealing with variances, we can develop the expression for
the variance of a sum of two variables (see Beals, p. 86-89). Suppose
we are interested in X + Y, then:

Ý4.21Þ EÝX + YÞ = X + Y =
>ÝX + YÞ i

n =
>X i

n +
>Yi

n = X# + Y#

Treating X + Y as a single variable, we can write down the
variance in X + Y:

Ý4.22Þ aX+Y
2 =

> ÝX + YÞ i ? X + Y 2

n

Expanding the numerator and substituting from (4.21):

Ý4.23Þ > ÝX + YÞ i ? X + Y 2 = > ÝX + YÞ i ? X# + Y# 2 = > X i ? X# + Yi ?

= > X i ? X# 2 + 2 X i ? X# Yi ? Y# + Yi ? Y# 2

= > x i
2 + 2> x iy i +> y i

2

We can then rewrite (4.22):
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Ý4.24Þ aX+Y
2 =

> x i
2 + 2> x iy i +> y i

2

n =
> x i

2

n +
> y i

2

n +
2> x iy i

n
= aX

2 + aY
2 + 2aXY

V. Tests of Hypothesis: Significance of

Difference in Group
Means; Variance in b
(Review Beals pp.179-99, pp.123-5, pp.235-43, pp.245-7,

pp.251-7)
So far we have been concerned with developing best estimates for

the expected value of Y, E(Y), or the best estimate of the conditional
expectation of Y, E(YP XÞ, or E(YP X1,X2,X3, ...Þ . We have been
ignoring the fact that we form these estimates on the basis of a sample
drawn from the population frequency distribution of Y or of the joint
frequency distribution of Y and X or Y and X1,X2,... Now we wish to
take into account the difference between the estimate, based on the
sample, of say E(Y) and the true value of E(Y) in the population. In
testing hypotheses, we explicitly take account of the fact that various
samples will yield somewhat different estimates for the value of E(Y).

In this section, our basic objective is to derive the expression for
the variance of the simple regression coefficient, b, and to show how
that can be used to test hypotheses about the relationship between Y
and X. We will derive the expression for the variance of b by two
different routes: first [equations (5.1) to (5.23)] by developing the logic
of the test for significant difference between two group means and
showing how that relates to the variance of b; second [equations (7.6)
to (7.11)] by deriving the variance of b directly from the expression for
b given in (3.6). Following these two routes is rather tedious, so it is
important continually to refer back to this statement about our basic
objective.

A. Tests of Significance of Difference in Group Means
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If it is assumed that the variable Y has a frequency distribution
which is described by a normal curve, then a good deal about the
distribution can be stated in terms of its mean,Y# , and its standard
deviation, ay. Diagram 1 illustrates the normal distribution:

If the distance Y1 ? Y# = a , then the area under the normal
curve between Y1 and Y# is 34.13 percent of the total area under the
curve; i.e. 34.13 percent of the values of Y in the distribution will have
a value between Y1 and Y# . If the distance Y2 ? Y# = 2a, then the
area under the curve between Y2 and Y# is 47.73 percent of the total
area under the curve. Thus, values of aon either side of Y# cover 68.26
percent of all cases and values of 2aon either side of Y#cover 95.46
percent of values in the distribution. If a value Y i, which is greater than
2aÝ+or ?Þaway from Y# is observed, there is only a 4.5 percent chance
that it is part of the same underlying distribution.

In summary, if the distribution of Y is normal, we can say that
when the absolute value of Yi?Y#

a is calculated, and is found to be
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greater than 2aÝ+or ?Þ away, then there is only a 4.54 percent chance
that the value Y i is part of the distribution which has mean Y#and
standard deviation a. (Stated obversely, there is a 95.46 percent chance
it is not from the same distribution). The interval Y# ± 1.96ais
commonly called the 95 percent confidence interval.

It is useful here to develop the expression for the variance of the

mean. Since Y# =
> Yi

n and each of the Y i in a given sample are
independent and have the same variance, ay

2,

Ý5.1Þ ay#
2 = var Y# =var 1

n ÝY1 + Y2 + ... + Yn Þ

= 1
n

2
varÝY1 + Y2 + ... + Yn Þ

From (4.24), we have the expression for variance of a sum. Since
the Y i are independent, the covariances of the Y i’s are zero. Therefore:

Ý5.1aÞ ay#
2 = 1

n
2
ßvarÝyÞ + varÝy2 Þ + ... + varÝyn Þà

= 1
n

2
ßay

2 + ay
2 + ... + ay

2 à

= 1
n

2
Ýnay

2 Þ

=
ay

2

n

Assume there are two groups. Members of group 1 have received
”no treatment” so are called ”controls”. Members of group 2 receive a
”treatment”, so they are called ”experimentals”. Y is the response
measure.

Consider now for the relationship between the mean of the
response variable for the control, Y# 1 , and the mean for the response
variable for the experimental group,Y# 2 . Take the difference between
these two means, Y# 1 ? Y# 2 . These groups are two samples and the
question is whether they are drawn from the same population (which
has a frequency distribution of variable Y) or from different
populations (Y1 and Y2 with different frequency distributions for Y).
If they are drawn from the same response population, then the
”treatment” had no effect. We can think of drawing repeated
two-group samples (e.g., repeated experiments). Then the means
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calculated, Y# 1 and Y# 2, would differ somewhat in successive samples.
Thus, the sample means would themselves have a frequency
distribution, and the difference between the means Y# 1 ? Y# 2 , would
also have a frequency distribution. Assume that this distribution is
normal, with its mean, Y# 1 ? Y# 2 , and its standard deviation,
a Y# 1 ? Y# 2 .

Now, for this distribution, statements can be made for certain
sample values, Y# 1 ? Y# 2 i

, of the difference between the two means.
If:

Ý5.2Þ
Y# 1 ? Y# 2 i

? Y# 1 ? Y# 2

a Y# 1 ? Y# 2
³ 2

then there is a 95.46 percent chance that Y# 1 ? Y# 2 i
is not from the

distribution with mean Y# 1 ? Y# 2 (or in other words, we would only
be wrong 4.54 percent of the time if we guessed it was not from the
distribution).
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If the two sample groups are really drawn from the same
underlying population distribution, then there should be no difference
in their means: i.e.,Y# 1 = Y# 2 , and Y# 1 ? Y# 2 = 0. Therefore, the
appropriate test is to set Y# 1 ? Y# 2 equal to zero and calculate the
absolute value,

Ý5.2aÞ
Y# 1 ? Y# 2 i

? 0

a Y# 1 ? Y# 2

If it is greater than 2, then we say the difference in the means is
significant at the 95 percent level, i.e. there is only a 4.54 percent
chance that a difference in sample means of this size, Y# 1 ? Y# 2 i

,
could be observed if the true difference in means were zero. Another
way of stating this is that if we had numerous successive two-group
samples (control and experimental) of the same size, only 4.54 percent
of these samples would have a difference in the means

Y# control ? Y# exp erimental i
that was as great as, or greater than, the

value Y# 1 ? Y# 2 i
.

With the observed control group and experimental group, one is
able to calculate Y# 1, and Y# 2, and the Y# 1 ? Y# 2 i

, for the above
expression. All that remains to be done, then, is to obtain a value for
the statistic given above as a Y# 1 ? Y# 2 .

Given that the two groups are drawn independently, Y# 1, and Y# 2 are
independent random variables each with a variance, ay# 1

2 and ay# 2
2 . Then

Y# 1 ? Y# 2is the sum of two random variables and has a variance,
a Y# 1?Y# 2

2 . Again, using the expression for the variance of a sum of
random variables (4.24), and noting that the covariance of Y# 1, and Y# 2 is
zero since they are independent, we get:

Ý5.3Þ a Y# 1?Y# 2

2 = ay# 1
2 + ay# 2

2

Substituting from (5.1a) for the variance of the mean, we get:
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Ý5.3aÞ aY# 1?Y# 2

2 =
ay1

2

n1
+

ay2
2

n2

Ý5.3bÞ aY# 1?Y# 2
=

ay1
2

n1
+

ay2
2

n2

Now we need to obtain from the sample data an estimate of ay# 1
2 and

ay# 1
2 and we’ll indicate that estimate by a T(hat) over the expression.

Ý5.4Þ a! y# 1
2 =

> i Y1i ? Y# 1
2

n1 ? 1 a! y# 2
2 =

> i Y2i ? Y# 2
2

n2 ? 1

Substituting in (5.3b), we get:

Ý5.5Þ a! y# 1?y# 2 =
a! y# 1

2

n1
+

a! y# 2
2

n2
=

> i
Y1i?Y# 1

2

n1?1
n1

+
> i

Y2i?Y# 2
2

n2?1
n2

which can be substituted into (5.2) to get the appropriate test
statistic.

B. Difference in Means as a Dummy Variable
Regression

To compare two groups in a simple regression, first, form the
following dummy variable:

Ý5.6Þ D i =
1 if a member of group 1
0 if a member of group 2

Let n1 = number in group 1
n2 = number in group 2
N = n1 + n2

Note that:

Ý5.7Þ >
N

D i = >
n1

1 +>
n2

0 = n1
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Now, for the characteristic we wish to compare across groups, Y,
write the simple regression

Ý5.8Þ Yi = a + bD i + e i

The normal equations for this simple regression are, by (1.2) and
(1.6):

Ý5.9Þ >
N

e i = >
N

ÝYi ? a ? bD i Þ = 0

= >
N

Yi ?>
N

a ? b>
N

D i = 0

= >
n1+n2

Yi ? Ýn1 + n2Þa ? bn1 = 0

Ý5.10Þ >
N

e iD i = >
N

ÝYi ? a ? bD i ÞD i = 0

Since all terms with D i = 0drop out of this product sum, leaving
only the n1 terms where D i = 1, we have:

Ý5.10aÞ >
N

e iD i = >
n1

ÝYi ? a ? bD i Þ = >
n1

Yi ? an1 ? bn1 = 0

Now, given both (5.9) and (5.10a) equal zero, we equate them:

Ý5.11Þ >
n1+n2

Yi ? Ýn1 + n2Þa ? bn1 = >
n1

Yi ? an1 ? bn1 = 0

Rearranging terms of (5.11) gives us:

Ý5.12Þ >
n1+n2

Yi ?>
n1

Yi = Ýn1 + n2Þa ? an1 ? bn1 + bn1 = Ýn1 + n2Þ

which gives:
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Ý5.12aÞ >
n2

Yi = n2a

Ý5.12bÞ a =
>n2

Yi

n2
= Y# 2

The constant term of the simple dummy variable regression equals
the mean of Y for group 2 (the group ”excluded” by the dummy
variable).

Now, substitute (5.12b) for a in equation (5.10a):

Ý5.13Þ >
n1

Yi ? n1
>n2

Yi

n2
? bn1 = 0

Rearranging (5.13) gives us:

Ý5.13aÞ bn1 = >
n1

Yi ? n1
>n2

Yi

n2

Dividing both sides by n1 gives:

Ý5.13bÞ b =
>n1

Yi

n1
-

>n2
Yi

n2
= Y# 1 ? Y# 2

So the simple regression coefficient, b, in the simple dummy
variable regression is the difference in means for the two groups. The
intercept, a, is the mean for group two. We call group two the
”excluded group” since it is the group for which D i = 0 .

Note that we use just one variable, D i , to define the two groups.
The simple regression, however, has two parameters, so we get from
the two parameters the mean for each group as follows:

Ý5.D1Þ Y# 1 = a + b = Y# 2 + Y# 1 ? Y# 2

Ý5.D2Þ Y# 2 = a = Y# 2

Alternatively, we could formulate the dummy variable regression
to represent the two group means as follows:

Define:
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D1i =
1 if group 1
0 otherwise

D2i =
1 if group 2
0 otherwise

>
n1

D1i = n1 >
n1

D2i = n2

Ý5D.3Þ Yi = b1D1i + b2D2i + e i

The normal equations for this regression are:

Ý5D.4Þ >
n1

e iD1i = >
n1

ÝY ? a ? b1D1i + b2D2i Þ = 0 = >
n1

Yi ? b1n1

Ý5D.5Þ >
n1

e iD2i = >
n1

ÝY ? a ? b1D1i + b2D2i Þ = 0 = >
n1

Yi ? b2n2

and, from that:

b1 =
>n1

Yi

n1
= Y# 1 and b2 =

>n2 Yi

n2
= Y# 2

If, however, we try to estimate:

Ý5D.6Þ Yi = a + b1D1i + b2D2i + e i

It will not work, i.e., we get no determinate solution for a, b1, or
b2. This is an example of linear dependence. The two dummy variables
representing only two groups yield two combinations: either D1i = 0
and D2i = 1, or D1i = 1 and D2i = 0 . The sum of squared
errors,> e1.2i

2 = 0 , since every observation comes from one of these
two locations, and thus the regression line fits perfectly.

You must remember, therefore, that if the dummy variable
equation has an intercept term, then there must always be an ”excluded
group”, i.e., a group only defined by taking on a value 0 for the dummy
variable. (Recall that equations written in deviation notation subsume
an intercept term, e.g.y i = bD i + e i, is equivalent to
y i = a + bD i + e i).

We can estimate regressions using dummy variables with
trichotomous variables in one dimension. Suppose we define three
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groups in terms of a single characteristic. For example, define three
race groups : Black, Hispanic, and White (non-Hispanic, non-Black).

Define:

D1i =
1if black

0otherwise D2i =
1 if hispanic
0 otherwise

The size of the groups are: N=n1 + n2 + n3 .
We can define group means in terms of the following dummy

variable regression:

Ý5D.7Þ Yi = a + b1D1i + b2D2i + e i

Now we have defined White as the ”excluded group.” Form the
normal equations for this regression:

Ý5D.8aÞ >
N

e i = >
n2

ÝY ? a ? b1D1i + b2D2i Þ = >
n1

Yi ? b1n1?b2n2 = 0

Ý5D.8bÞ >
n1

e iD1i = >
n1

ÝY ? a ? b1D1i + b2D2i ÞD1i = >
n1

Yi ? n1a ? b1n1 = 0

Ý5D.8cÞ >
n1

e iD2i = >
n1

ÝY ? a ? b1D1i + b2D2i ÞD2i = >
n1

Yi ? n2a ? b2n2 = 0

From (5D.8b) rearranged, we get:

Ý5D.9bÞ b1n1 = >
n1

Yi ? n1a

From (5D.8c) rearranged, we get:

Ý5D.9cÞ b2n2 = >
n1

Yi ? n2a

Substitute (5D.9b), (5D.9c) into (5D.8a) to get:

Ý5D.10aÞ >
N

Yi ? Na ? >
n1

Yi ? n1a ? >
n2

Yi ? n2a = 0

Collecting terms:
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Ý5D.10bÞ >
N

Yi ? >
n1

Yi ->
n2

Yi ? Na + n1a + n2a = >
n3

Yi ? n3a

so:

Ý5D.11Þ a=
>n3

Yi ? n3a
n3

= Y# 3

Substituting (5D.11) into (5D.8c) gives us:

Ý5D.12Þ >
n1

Yi ? n 3 Y# 3 ? b1n1 = 0

Ý5D.13Þ b1 =
>n1

Yi

n1
? Y# 3 = Y# 1 ? Y# 3

Substituting (5D.14) into (5D.15) gives us:

Ý5D.14Þ >
n2

Yi ? n 2 Y# 3 ? b2n2 = 0

Ý5D.15Þ b2 =
>n2

Yi

n2
? Y# 3 = Y# 2 ? Y# 3

From the regression we can generate the mean for each group:

Y# 1 = a + b1 = Y# 3 + Y# 1 ? Y# 3

Y# 2 = a + b2 = Y# 3 + Y# 2 ? Y# 3

Y# 3 = a = Y# 3

Note again, we could alternatively define:

D3 = 1 if white
0 otherwise

and estimate:
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Ý5D.16Þ Yi = b1D1i + b2D2i + b3D3i + e i

Then you can show from normal equations:

b1 = Y# 1 b2 = Y# 2 b3 = Y# 3

You cannot estimate:

Yi = a + b1D1i + b2D2i + b3D3i + e i

for the same reason as above (linear dependence). Thus, as above,
if there is an intercept in the dummy variable regression, there must be
an ”excluded group”, a group not represented by a separate dummy
variable.

C.Variance of b and aY# 1?Y# 2

2 .

In (5.3a), we developed the expression for the variance in the
difference of two group means:

Ý5.14Þ aY# 1?Y# 2

2 =
ay1

2

n1
+

ay2
2

n2

Since, as we have just shown, in a simple dummy variable
regression, b= Y# 1 ? Y# 2 , then:

Ý5.15Þ ab
2 = aY# 1?Y# 2

2 =
ay1

2

n1
+

ay2
2

n2

Let us assume that aY1
2 = aY2

2 = aYe
2 , then rewrite (5.15) as

Ý5.15aÞ ab
2 = ae

2 1
n1

+ 1
n2

= ae
2 Ýn1 + n2 Þ

n1n2
=

ae
2

n1n2

N

Now, consider the sum of squared deviations for the variable D i :

Ý5.16Þ >
N

D i ? D# 2 = >
N

ÝD i Þ2 ? 2D# >
N

ÝD i Þ + ND# 2

Substituting D# =
> Di

N :
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Ý5.16aÞ >
N

D i ? D# 2 = >
N

D i
2 ? 2

>N D i >N D i

N +
NÝ>N D iÞ2

N2 = >
N

D i
2 ?

Ý>

All the n2 terms where D i = 0 drop out of >NÝD i Þ2 and for
D i = 1, D i

2 = 1

Ý5.17Þ >
N

D i
2 = n1

Ý5.18Þ> D i ? D# 2 = >
N

D i
2 ? Ý>D i Þ

2

N = n1 ?
n1

2

N = n1N ? n1
2

N

= n1Ýn1 + n2 Þ ? n1
2

N = n1n2
N

So using (5.18), we can rewrite (5.15a):

Ý5.19aÞ ab
2 = ae

2

n1n2
N

= ae
2

> D i ? D# 2

We wrote down the test statistic for determining a difference in means
was significantly different from zero. Now using (5.13b), (5.15a), and
(5.19) to substitute into (5.2), we can rewrite (5.2):

Ý5.20Þ
Y# 1 ? Y# 2
aY# 1?Y# 2

= |b |
ab

= |b |
ae

2

> Di?D# 2

so that we can test for the significance of a difference in means by
forming the test statistic given by (5.20). The expression Y# 1?Y# 2

aY# 1?Y# 2
is

a Z distribution, but when Y# 1 ? Y# 2 are from a sample and aY# 1?Y# 2
is

estimated a! Y# 1?Y# 2
as in (5.5), the ratio Y# 1?Y# 2

aY# 1?Y# 2
is a t distribution with

N-1 degrees of freedom (see Beals, chapter 8). Now if we estimate b
in (5.8) from a sample, and ay from a sample, and substitute these into
(5.20) then:
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Ý5.21Þ b
a! b

= b
ae

2

> Di?D# 2

= tN?2

So a test equivalent to the test for whether the difference of the
group means is significantly different from zero would be to form the
ratio (5.21) and then see if it is greater than or equal to 1.96, which is
the t value for the 5 percent level of significance, where N-2 is large.

Thus, we can see that the test for significance of b in the simple
dummy variable regression is equivalent to the test for significant
difference in the means of Y for two groups.

Making a leap by analogy, we can substitute any simple regression
independent variable X i for D i and write down the variance for byx

directly from (5.19) as:

Ý5.22Þ abyx
2 = ae

2

>ÝX i ? XÞ2 = ae
2

>X i
2

where ae
2 is the variance of the error term in the simple regression of y

and x. (We will return to this in a more formal fashion later). Likewise,
by analogy, the test statistic for byx significantly different from zero
would be:

Ý5.23Þ b
ab

2
= b

a! e
2

> xi
2

= tN?2

D. Variance of Multiple Regression
Coefficients

Recall that we derived the multiple regression coefficient by1.2

through the auxiliary regression of x1i and x2i and showed in equation

(3.6) that by1.2 =
> yie1.2i

> e1.2i
2

.

Since e1.2i is the independent random variable in a regression with
y as the dependent variable, we can simply substitute e1.2i for x i in
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(5.22) and write:

Ý5.24Þ aby1.2

2 =
ae1.2i

2
2

> e1.2i
2

Just as (3.6) can be generalized to the case of more than two
independent variables when the residual from the auxiliary regression
is redefined, i.e., e1.2,3,...,ni, so (5.24) can similarly be generalized using
e1.2,3,...,niin place of e1.2i:

Ý5.25Þ aby1.2,3,4,,,ni

2 =
ae1.2,3,4,,,ni

2
2

> e1.2,3,4,,,ni
2

E. F-Statistic, Analysis of Variance,
Hypothesis Tests on Several Parameters

(see Beals pp. 247-50, pp. 274-81)
First, we wish to show the equivalence of the F-statistic test for

significance of the regression and the t-statistic test for significance in
the case of a simple regression. The F-statistic is:

Ý5.26Þ SSR/ÝK ? 1Þ
SSE/ÝN ? KÞ

= N ? K
K ? 1

SSR/SST
1 ? ÝSSR/SSTÞ

= N ? K
K ? 1 ßRà

where SSR - > y i
2; regression sum of squares (see 4.7)

SSE -> e i
2; error sum of squares

SST - > y i
2; total sum of squares

K - number of regression coefficients (incl. constant)
N - sample size
The critical value for F is determined from the F-table entry for

(K-1) numerator degrees of freedom and (N-K) denominator degrees
of freedom, for the selected confidence level, e.g. 5 percent. If the
calculated F-value exceeds the critical F-value, the null hypothesis of
no significance is rejected, i.e. the regression explains a significant
proportion of the variance in Y.

Noting that in the case of a simple regression K = 2, so (K - 1) = 1,
and using (4.11) to substitute for SSR=> y i

2, we get:
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Ý5.27Þ SSR/Ý2 ? 1Þ
SSE/ÝN ? 2Þ

= b2>x i
2

> e i
2/N ? 2

= b2>x i
2

ae
2 = b2

ae
2/>x i

2

Comparing (5.27) with (5.23) shows for the simple regression

Ý5.27aÞ SSR/Ý2 ? 1Þ
SSE/ÝN ? 2Þ

= b2>x i
2

ae
2 = t2

So in the case of a simple regression, the t test for the significance
of b and the F test for the significance of the regression are equivalent.
(The F test is also sometimes referred to as the test for significance of
R2, as can be seen from the last expression in (5.26).)

The F test for the regression is sometimes referred to as analysis of
variance, since it derives from the partition of total variance, as in (4.7),
into a regression sum of squares and an error sum of squares. It is
usually presented in an analysis of variance table. (See Beals, p.249, p.
275)

The F-statistic for a multiple regression is constructed from (5.26),
but the relationship of the F-statistic and the t-statistic is more
complicated. Suppose we are calculating the F-statistic for a regression
equation such as (3.1). Once again the SSR will be > y i

2, but now
when we use (4.14) to substitute for yi, we get:

Ý5.28Þ SSR/Ý3 ? 1Þ
SSE/ÝN ? 3Þ

=
> y .12i/2

2

> e .12i/ÝN?3Þ
2

=
>Ýby1.2 x1i + by2.1 x2i ÞÝby1.2 x1i + by2.1 x2i Þ/2

a! e
2

=
>by1.2

2 x1i
2 +>by2.1

2 x2i
2 + 2>by1.2 x1i + by2.1 x2i

2a! e
2

Using (5.24), we note that:

Ý5.29aÞ tby1.2
2 =

by1.2
2

a! by1.2
2 =

by1.2
2

a! e
2/> e1.2i

2

and:
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Ý5.29bÞ tby2.1
2 =

by2.1
2

a! by2.1
2 =

by2.1
2

a! e
2/> e2.1i

2

or:

Ý5.30aÞ by1.2
2 = tby1.2

2 aby1.2
2 =

tby1.2
2 a! e

2

> e1.2i
2

Ý5.30bÞ by2.1
2 = tby2.1

2 aby2.1
2 =

tby2.1
2 a! e

2

> e2.1i
2

Substituting (5.30a) and (5.30b) into (5.28), then using an
expression > e1.2i

2 and > e2.1i
2

derived from squaring both sides of auxiliary equations like (3.4)
and the expression (4.13a) for the correlation coefficient r12 between
X1 and X2, with considerable manipulation (which I won’t go into
here: see Kmenta, p. 368), you get:

Ý4.31Þ SSR/Ý3 ? 1Þ
SSE/ÝN ? 3Þ

=
tby1.2
2 + tby1.2

2 + 2tby1.2
t by2.1

r12

2Ý1 ? r12
2 Þ

which is the F-statistic for 2, N-2 degrees of freedom.
Therefore, while F for the regression and t for b are strictly related

in the simple regression case so significance of b by a t-test necessarily
means significance of the regression by the F-test, in the multiple
regression case, one cannot infer from the t-tests on the coefficients to
the F-test for the regression as a whole. If r12

2 is close to 1, F may be
large even though the tby1.2, tby2.1 are small.

F. Tests for Joint Significance of Multiple
Regression Coefficients

Sometimes we wish to test whether a set of coefficients as a group
is significantly different from zero, i.e.

H:Ky1.2 = Ky2.1 = 0
where Ky1.2 ,Ky2.1 are the population values of which by1.2 and by2.1
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are the sample estimates. Recall that, e.g. by1.2

can differ from Ky1.2 because of sampling variability (just as the
sample difference in means

Y# 1 ? Y# 2 i
could differ from the true population difference in

means Y1 ? Y2

in our difference in means examples alone).
Now look at the numerator of (5.28), we can see that if the

population value were Ky1.2 = Ky2.1 = 0, then the SSR would only
differ from zero because of the sampling variability in the by1.2 and by2.1 .

. If that is true then both the numerator and denominator give
estimates of the sampling variability, and the F-test, which is basically
a t-test of whether the numerator and denominator are from the same
distribution, gives us a test of the null hypothesis. If Ky1.2 = Ky2.1 = 0,
the F-value will fall below the critical F2, N-3 value. If the F-value is
above the critical value, the numerator and denominator are from
different distributions and SSR differs from zero by more than
sampling variability and therefore not all the Kare zero.

We can extend the use of the F-statistic to test for the joint
significance of a subset of regression coefficients from a multiple
regression involving more than two independent variables.

Consider the population regression equation:

Ý5.32Þ y i = Ky1.23 x1i + Ky2.13 x2i + Ky3.12 x3i + ey.123i

Suppose we are interested in testing the hypothesis:

H0 = Ky2.13 = Ky3.12 = 0

Note that if the hypothesis is true, the appropriate population
regression is:

Ý5.33Þ y i = Ky21
x1i + ey.1i

Note that both equations would yield the same total sum of squares
(SST), but yield different regression sum of squares (SSR) and error
sum of squares (SSE). For (5.32), we get:
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Ý5.34Þ > y i
2 = > y .123i

2 +> ey.123i
2

Ý5.34aÞ SST = SSR .123 + SSE .123

For (5.33), we get:

Ý5.35Þ > y i
2 = > y .1i

2 +> ey.1i
2

Ý5.35aÞ SST = SSR .1 + SSE .1

If in fact the null hypothesis is true, and Ky2.13 = Ky3.12 = 0
then in the population SSR.123 would equal SSR.1 and any

observed difference between them would be due to sampling
variability (causing by2.13 and by3.12 to differ from zero). Thus, if we
estimate (5.32) and (5.33) from the sample and form the ratio:

Ý5.36Þ SSR .123 ? SSR .1/Ý4 ? 2Þ
SSE .123/ÝN ? 4Þ

³ FÝ4?2Þ,ÝN?4Þ

If the null hypothesis is true, then the numerator and denominator
will both estimate sampling variability in the same population, and the
F-value of the ratio will fall below the critical value for F with those
degrees of freedom. If F exceeds the critical value, the SSR. .123

exceeds SSR.1 by more than sampling variability, and the null
hypothesis is false. This means either Ky2.13 or Ky3.12 or both do not
equal zero (at the given confidence level).

We can also write (5.36) in terms of R2:

Ý5.36aÞ SSR .123 ? SSR .1/Ý4 ? 2Þ
SSE .123/ÝN ? 4Þ

= SSR .123/SST ? SSR .1/SST
SSE .123/SST

= R .123
2 ? R .1

2

1 ? R. .123
2

N ? Q
Q ? K

VI. Problems in Non-Standard
Statistical Analyses

So far the discussion has been concerned with developing the logic
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of simple and multiple regression analysis and with tests of hypotheses
concerning the coefficients of the regression equation. In this
development, I have ignored the importance of certain assumptions
regarding the underlying probabilistic process which generates the
observations in the population from which the statistical samples are
drawn. I have also disregarded problems which arise when the
relationship between that population process, the regression equation
specified, and/or the sample data actually available are not standard. In
the sections which follow, I will go over some of the problems of what
I call non-standard analysis, showing some examples of how they can
affect the estimates of regression coefficients or tests of hypothesis,
and, in some cases, how more complicated estimation procedures can
overcome these problems.

A. Multicollinearity (see Beals, pp.294-7)
The problem of multicollinearity can arise when in the sample

available for estimation, two or more of the independent variables have
a high covariance. Fortunately, the way we developed the multiple
regression coefficient via the auxiliary regression [equations (3.1) to
(3.6)] makes it quite easy to see how this problem can arise. We run
the auxiliary regression (3.2) in order to obtain the e1.2i. If X1 and X2

were perfectly collinear, the e1.2i would all be zero. In that case, (3.5)
would be meaningless and the regression coefficient in (3.6) would be
undefined since > e1.2i

2 in the denominator would be zero. An exact
relationship between X1 and X2 rarely arises and the multicollinearity
problem most often takes the form of a high co-variance between x1

and x1, with the result e1.2iof the auxiliary regression small but
non-zero. We can see that as the e1.2i get quite small, the estimate of
by1.2

may become rather unstable with both the numerator > y ie1.2i and
the denominator > e1.2i

2 getting close to zero, but their quotient,by1.2

being much affected by which gets closer to zero: if the numerator
gets closer,by1.2 is small; if the denominator gets closer, by1.2 may be
quite large. In these cases, small rounding errors in calculations can
make estimates bounce around a lot. The problem is further underlined
by examining the expression for a! by1.2

2 , as developed in (5.24). The
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higher the covariance of x1 and x2, the smaller will be > e1.2i
2 with the

numerator of a! by1.2

2 , a! e.12

2

, constant the smaller denominator, > e1.2i
2 causes a! by1.2

2 to get very
large. Thus, multicollinearity of x1 and x2 increases the variance of
by1.2

and by2.1 considerably. This is another way of seeing the instability
of the estimated regression coefficients.

While the problem of multicollinearity in the sample does arise
fairly frequently in economic analysis, particularly in time-series
analysis where many variables move together in both trends and cycles,
it is common to misuse the concept of multicollinearity and to explain
away weak results as due to multicollinearity when in fact the problem
does not appear in the data. I have emphasized, by reference to (3.6)
and (5.24), that the problem can arise when the e1.2i alone do not
constitute sufficient evidence of the problem. Some analysts jump to
the conclusion that high covariance of x1 and x2 alone establishes the
existence of a multicollinearity problem. However, as long as the
correlation of x1 and x2 falls short of 1, it is possible that there is
sufficient information in the sample as represented by the non-zero e1.2i

to get significant estimate of by1.2 . The ultimate test of multicollinearity
lies in the estimates of by1.2 and a! by1.2

. If the relations of y and x1 is
sufficiently strong, it will show up in > y ie1.2i/> e1.2i

2

, even though the e1.2i are small. For example, even if the R1.2
2

is .90, the .10 independent variance of x1i represented in the e1.2i

may be adequate to estimate a significant relationship of y and x1.
Even though a! by1.2

will be large when e1.2i are small, if there is a strong
covariance of y and e1.2i,> y ie1.2i, it will make by1.2

sufficiently large for the ratio by1.2 /a! by1.2
to pass the t-test.

In looking for multicollinearity problems, therefore, it is not
sufficient to examine the correlation among independent variables. The
best evidence is obtained by first running a regression with just x1 as
an independent variable, and then a second regression with both x1 and
x2. If x1 is significant in the first regression, i.e. by1 /a! by1

passes the
t-test, but in the second regression a! by1.2

gets very large, a! by2.1
is also

very large and as a result, both by1.2 and by2.1 fail to pass the t-test, then
there is a multicollinearity problem, i.e. there is not enough information
in the sample about x1 independent of x2, and vice-versa, to estimate
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the independent effect on y of x1 and of x2. (In this comparison of the
two regressions, the R .12

2

will not be significantly greater than the R .1
2 by the F-test indicated

in (5.36a), evidence that adding X2 adds no independent information
about factors affecting y). Note that what happens in this case is that as
we add x2 in the second regression, the estimate of the effect of x1 and

y shifts from by1 =
> yixi

> x1i
2

to by1.2 =
> yie1.2i

> e1.2i
2

and its variance from a! by1
2 = a! e.1

2

> x1i
2

to a! by1.2
2 = a! e..12

2

> e1.2i
2

In the shift, the numerator of the coefficient falls more rapidly than
the denominator, and the denominator of the variance falls sharply. The
resultant t-ratio shifts from by1 /aby1 to by1.2 /aby1.2 and falls sharply as
the numerator falls and/or the denominator rises sharply.

The multicollinearity problem then shows up in the large variances
of the regression coefficients in the estimated regressions. It cannot be
determined without actually running the regressions; again high
correlation among the independent variables does not alone evidence a
multicollinearity problem in the estimates.

B. Omitted Variable Bias (see Beals, pp.
288-92)

[At this point, students should review the properties of estimators,
i.e. unbiasedness, efficiency, asymptotic unbiasedness, consistency,
and asymptotic efficiency. (see Beals, pp. 144-64.) I will not discuss
these here but assume familiarity with the concepts.]

One of the arguments for using multiple regression in trying to
estimate a relationship between a dependent variable y and an
independent variable x1 is that there may be other variables affecting y,
say x1, which are in turn correlated with x1. Thus, taking the simple
regression estimate of the relationship, by1 may mislead us about the
effect of a change in x1 holding x2 constant. To put this in other terms,
the regression equation:

Ý6.1Þ y = by1 x1i + ey.1i
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may be a misspecification of the correct relationship:

Ý6.2Þ y = by1.2 x1i + by2.1 x2i + ey.12i

because we have omitted a variable x i which affects y. If this is the
case, by1

is a biased estimate of the true coefficient by1.2 .
We have already derived an expression which indicates the extent

of omitted variable bias if we estimate (6.1) when (6.2) is the
appropriate estimating equation. The bias indicated in equation (3.20a)
is repeated here:

Ý6.3Þ by1 = by1.2 + b21BY2.1

To the extent x2 does have an independent effect on y, i.e. if
by2.1 = 0, then by1 will be subject to omitted variable bias.

The issue of omitted variable bias arises sometimes in critiques of
estimated relationships when it is argued that some theoretically
relevant variable has not been included in the estimated relationship. It
also arises in cases where it is hypothesized that some unobservable
variable operates on the dependent variable and, since it can’t be
measured, has been omitted leading to a potential bias. Sometimes,
using relationship (6.3), one can make plausible guesses about the
direction and order of magnitude of omitted variable bias.

VII. Basic Assumptions about the
Population Model and Problems
Due to their Violation (see Beals,
pp. 233, 265-7)

It is now necessary to be clearer about the basic assumptions
which are made about the probability model which generates the
observations in the population. Also we need to reemphasize the
distinctions between the population model and the regression model
estimated from the sample. We will then see how the desirable
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properties of the least squares estimates depend on these basic
assumptions by showing how some violations of the basic assumptions
can cause least squares estimates to fail to have the desirable
properties.

Let us specify the population regression model as:

Ý7.1Þ y = Ky1.2 x1i + Ky2.1 x2i + Wy.12i

where Wy.12i is the disturbance from the regression line for
observation i in the population. I use the K and W notation to
differentiate the population model and observations from the sample
regression equation parameters and error term.

Basic assumptions about the population probability model as
represented by (7.1) which we make are:

(7.2) Each Wi is a random variable with mean zero

>ÝWi Þ = 0 i = 1,2...,n

(7.3) The Wi’s are independent of each other

covÝWi,WjÞ = EÝWi,WjÞ = 0 fori ® 0

(7.4) All Wi’s have the same variance

varÝWi Þ = EÝWi
2 Þ = aW

2 fori = 1,2, ...,n

This condition is referred to as homoskedasticity.
(7.5) The X’s are
a) non-random, or
b) independent of the Wi, and

c) such that
> X i?X# 2

n is finite and non-zero.
As a result

covÝXk,i,Wi Þ = EÝXk,i,Wi Þ = 0 k = 1,2i = 1,2, ...,n

I will not discuss these assumptions in detail, but will proceed first
to illustrate their importance by using one of them to derive the
expression for

varÝbyi Þ in a simple regression and then, second, to illustrate
problems of non-standard analysis which arise when some of these

51



assumptions are violated.
We have already derived the expression for varÝbyi Þ by another

means in (5.22). Let us start, this time, however, with the basic
population model as:

Ý7.6Þ y i = Kyixi + Wy.1i

From our sample, we derive the least squares estimate
by1 , which, using (2.11) is:

Ý7.7Þ byi =
> x1iyi
> x1i

2

Substitute (7.6) for yi:

Ý7.8Þ byi =
> x1iÝKyixi + Wy.1iÞ

> x1i
2

=
> x1i

2 Kyi +> x1iWy.1i

> x1i
2 =Ky1 +

> x1iWy.1i

> x1i
2

If we take the expected value of b, we see that b is an unbiased
estimator of

Ky1 :

Ý7.9Þ EÝby1 Þ = Ky1 + E
> x1iWy.1i

> x1i
2 = Ky1 + E

> x1i

> x1i
2 EßWy.1i à

because, if assumption (7.5b) holds, x1i and Wy.1i are independent
random variables and the expected value of the product of independent
random variables is the product of their expected values, thus

E
> x1iWy.1i

> x1i
2

= E
> x1i

> x1i
2

EßWy.1i à

(see Beals, p. 90),
and, by assumption (7.2) EÝWi Þ = 0
For the variance of byi , we have:
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Ý7.10Þ varÝby1Þ = var Ky1 + E
> x1iWy.1i

> x1i
2

= var
> x1iWy.1i

> x1i
2

since variance of a random variable plus a constant is equal to the
variance of the random variable (see Beals, p. 62).

Ý7.10aÞ varÝby1Þ = var
> x1iWy.1i

> x1i
2 = E

> x1iWy.1i

> x1i
2

2

= E
> x1i

2 Wy.1i
2

Ý> x1i
2 Þ2 + 2E

> i<j x1ix ijWiWj

Ý> x1i
2 Þ2

In the first term, by assumption (7.4), EÝWi
2 Þ = aW

2 for all i, it can
be factored out and the > x1i

2

cancels out with part of the denominator, leaving aW
2E 1

> x1i
2

.

In the second term, by assumption (7.3), the EÝWi,WjÞ = 0
and by (7.5), EÝXk,i,Wi Þ = 0, so the second term vanishes there:

Ý7.10bÞ varÝbyi Þ = aW
2E 1

> x1i
2

When we estimate varÝbyi Þ from the sample, we substitute a! e
2

=
> ei

2

n?2 as an estimate of aW
2 and 1

> x1i
2

from the sample as an estimate

of

E 1

> x1i
2

. Thus we obtain:

Ý7.11Þ var!Ýbyi Þ = E a! e
2

> x1i
2

which is equivalent to (5.22).
Therefore, by using the basic assumptions, we obtain the estimator

of the variance byi
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more directly than by the route used above. It should be clear that
violation of the basic assumptions could lead to a different expression
for

EÝby1Þ and var(by1Þ. I will proceed to a brief examination of some
examples of such cases.

VIII. Violations of the Basic
Assumptions (see Beals, p. 348)

A. Autocorrelated Disturbances
Suppose that assumption (7.3) is violated, so that:

Ý8.1Þ covÝWi,WjÞ = EÝWi,WjÞ ® 0

For example,
Wt might be generated by an autoregressive process such as,

Ý8.2Þ Wt = _Wát?1â + v tâ

where
vtare independent random variables with mean zero and constant

variance av
2.

Let us examine the characteristics of the estimator by1 for Ky1 from
the population equation:

Ý8.3Þ y t = by1x t + Wt

under these conditions.Similar to equation (7.8):

Ý8.4Þ by1 =
> x ty t

> x t
2 =

> x tÝKy1 x t + Wt Þ
> x t

2 = Ky1 +
> x tWt

> x t
2

Ý8.5Þ EÝby1 Þ = Ky1 + E
> x tWt

> x t
2 EßWt à
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so by1 is still an unbiased estimator of Ky1 .
However, when we look at varby1 , we find:

varÝby1 Þ = var Ky1 +
> x tWt

> x t
2 = var

> x tWt

> x t
2

Ý8.6Þ = E
> x tWt

> x t
2

2

= E
> x t

2Wt
2

Ý> x t
2Þ2 + 2E

>s<T x tx t?sWtWt?s

Ý> x t
2Þ2

= aW
2E 1

> x t
2 + 2aW

2E
>s<T x tx t?s_s

Ý> x t
2Þ2

since, given (8.2), cov (Wt, Wt?1Þ = _aW
2 ,

. Now, as contrasted with the similar equation (7.10a), the second
term in (8.6) doesn’t disappear. Thus, the standard tests which use
(7.10b), or more likely its estimate (7.11), are incorrect [they will in
general underestimate var Ýbyi Þ.

The Durbin-Watson statistic is used to test for autocorrelated
disturbances (see Beals, p. 348). If the test indicates autocorrelated
disturbances, an attempt can be made to correct for it. First, estimate:

Ý8.7Þ y t = by1 x1t + P t

If the Durbin-Watson test indicates autocorrelation, estimate:

Ý8.8Þ P t = _! P t?1 + v t

Using this estimate of _, transform the data by multiplying t-1
values by

rho and subtracting from the t values, yielding:

Ý8.9Þ y t ? _y t?1 = by1Ýx1i ? _x1t?1 Þ + ÝP t ? _P t?1 Þ = by1Ýx1i ? _x1t?1 Þ

If _! is a good estimate of _, then vt conforms with the basic
assumptions (7.2) to (7.4), and the usual test statis-tics may be applied
to

by1 as estimated from (8.9).

B. Heteroskedasticity
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Suppose assumption (7.4) is violated. Then in expression (7.10a),

for var by1 , the second term, 2E
> i<j

x1ixijWiWj

Ý> x1i
2 Þ2

does vanish, but the first term E
> x1i

2 Wy.1i
2

Ý> x1i
2 Þ2

® aW
2E 1

> xt
2

sinceaW
2 differs for each i, so:

Ý8.10Þ varÝbyi Þ =
x1i

2 ay.1i
2

Ý> x1i
2 Þ2

+
x12

2 ay.2
2

Ý> x1i
2 Þ2

+ ... + x1n
2 ay.n

2

Ý> x1i
2 Þ2

Thus, using (7.11) would in some cases over-estimate (if a i

increases with x i), and other cases under-estimate the truevarby1 given
by (9.1). [See Beals, pp. 357-62 for tests and corrections for
heteroskedasticity].

[Note that between (5.15) and (5.15a) above, we assumed ay1
2

=ay2
2 = aye

2 i.e. homoskedasticity across groups. This allowed us to
make the transition from aÝy# 1?y# 2Þ

2 to ab
2.

C. Generalized Least Squares: An Example
Here, we will simply present an example of a G.L.S. correction for

heteroskedasticity. From Kmenta p. 504, we have the G.L.S. estimate
for B:

Ý12.14Þ B* = ÝX8I?1XÞ?1ÝX1I?1YÞ

We will simply grind through the case for forming this estimate
when there is one independent variable X, and there are only three
observations, and where the disturbances are hetero-skedastic.
Consider
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Ý8.11Þ Y = BX+P where EÝP i,P jÞ = a ij =
a ijfor i=j

0 for i ® j

I =
a11

2 0 0

0 a22
2 0

0 0 a33
2

liand the values of I are known.
Then, referring to Kmenta, p. 610-11, form I?1:

Ý8.12Þ I?1 = 1
detI adj.I

For det I, see Kmenta, p. 607 (B.15):
det I = a11

2 a22
2 a33

2 + 000 + 000 ? 0a22
2 0 ? 00a11

2 ? a33
2 00

=a11
2 a22

2 a33
2

Kmenta, p. 610 (B.25):

adj. I =
a11

2 a21
2 a31

2

a12
2 a22

2 a32
2

a13
2 a23

2 a33
2
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I11 = det
a22

2 0

0 a33
2

?12

= a22
2 a33

2

I22 = det
a11

2 0

0 a33
2

?14

= a11
2 a33

2

I33 = det
a11

2 0

0 a22
2

?12

= a11
2 a22

2

I12 = det
0 0

0 a33
2

?13

= 0 I13 = det
0 a22

2

0 0

?14

= 0

I21 = det
0 0

0 a33
2

?13

= 0 I23 = det
a11

2 0

0 0

?15

= 0

I31 = det
0 0

a22
2 0

?14

= 0 I32 = det
a11

2 0

0 0

?15

= 0

adj.I = det
a22

2 a33
2 0 0

0 a11
2 a33

2 0

0 0 a11
2 a22

2

Thus, if we estimate:

Ý8.13Þ I?1 = 1
detI adjI = 1

a11
2 a22

2 a33
2

a22
2 a33

2 0 0

0 a11
2 a33

2 0

0 0 a11
2 a22

2
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=

a22
2 a33

2

a11
2 a22

2 a33
2 0 0

0 a11
2 a33

2

a11
2 a22

2 a33
2 0

0 0 a11
2 a22

2

a11
2 a22

2 a33
2

=

1
a11

2 0 0

0 1
a22

2 0

0 0 1
a33

2

Ý8.14Þ X?1 I?1 = ßX1X2X3 à

1
a11

2 0 0

0 1
a22

2 0

0 0 1
a33

2

= X1

a11
2

X2

a22
2

X3

a33
2

Ý8.15Þ X8IX = X1

a11
2

X2

a22
2

X3

a33
2

X1

X2

X3

= X1

a11
2 + X2

a22
2 + X3

a33
2 = >

i=1

3 X i
2

a ii
2

Ý8.16Þ X8IY = X1

a11
2 + X2

a22
2 + X3

a33
2

Y1

Y2

Y3

= X1Y1

a11
2 + X2Y2

a22
2 + X3Y3

a33
2 = >

i=1

3
X iYi

a ii
2
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Ý8.17Þ B* =
> i=1

3 X iYi

aii
2

> i=1
3 X i

2

aii
2

Thus if we estimate:

Ý8.18Þ Y1
a ii

= b X1
a ii

+ e1
a ii

= b X1
a ii

+ v i

Ý8.19Þ b =
> i=1

X iYi

aii
2

> i=1
X i

2

aii
2

= B*

The OLS of a ii weighed observation is the G.L.S. estimate.
Note the EÝv i

2 Þ = 1 = a ii
2 , so the transformed errors satisfy the

assumption of the classical model,

Ý8.20Þ EÝv iv jÞ =
a2 0 0

0 a2 0

0 0 a2

=
1 0 0

0 1 0

0 0 1

From this example, we see that G.L.S. transforms the error terms
so that they satisfy the classical assumptions, and then the resulting
estimators have the classical properties.

Alternately, we can examine the sum of squared errors for the 1
aii

weighted regression:
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Ý8.21Þ >
i=1

n
e i
a ii

2
= e1

a11

2
+ e2

a22

2
+ e3

a33

2
= e1

a11
+ e2

a22
+ e3

a33

= e1 e2 e3

1
a11

2 0 0

0 1
a22

2 0

0 0 1
a33

2

= éI?1e

So when we find b by OLS for this regression, we are really
minimizing the sum of the squares of the errors weighted by the
inverse of the variance-covariance matrix, sometimes referred to as the
generalized sum of squares.

We can see that if the original error,e, conformed to the classical
assumptions EÝe i

2 Þ = a2, EÝe ie jÞ = 0 weighting the errors by the
inverse variance-covariance matrix would simply normalize all the
squared errors to 1. Using the same weight for each e i and minimizing
the weighted and unweighted sum of squares would give us the same
answer. Whenevere does not meet classical assumptions, minimizing
the squared error unweighted does not give us minimum variance
estimators of the B’s. The weighting in the generalized sum of squares
shifts weight towards these observations with least error. So whenever
the variance-covariance matrix of e doesn’t conform to the classical
assumptions (and we know or estimate it), we can reduce the variance
of the B’s by incorporating that information in our estimating
procedure. This is the rationale for seemingly unrelated regression and
full information methods.

Recall that in this example, we have assumed Omega is
known. In practice, we usually have to estimate it. In order to estimate
the elements of

Omega, we must impose assumed restrictions on it, since the
number of unrestricted elements in an n×nI would be n2

2 Ýsince
covariances are symmetric).
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IX. Distributed Lags
Ý9.1Þ Yt = J + K0X t + K1X t?1 + ... + KmX t?m + P t

Problems in estimating (9.1) : a) observations lost due to lags
(need m periods of data for first observation on joint y,x)

b) too many parameters to estimate with preci-sion.
Koyck Lag
If willing to specify a geometric structure of lag coefficients:

Ý9.2Þ Yt = J + K0ÝX t + VX t?1 + V2X2 + ...ÞVP
0 ² V ² 1

For Koyck transformation, lag (9.2) by one period and multiply by
lambda:

Ý9.3Þ VYt?1 = VJ + VK0X t?1 + V2K0X t?2 + V2X2 + ... + VP t?1

and subtract (9.3) from (9.2):

Ý9.4Þ Yt = J ? VJ + K0X t + VX t?1 ? Vk+1K0X t?k?1 + ÝP t ? VP t?1Þ

If k is very large, the term
Vk+1K0X t?k?1 will be small, so we rewrite (9.4) as:

Ý9.4aÞ Yt = J0 ? K0X t + VX t?1 ? R t

where J0 = JÝ1 ? VÞ K0 = K0 R t = P t ? VP t?1

Row we Reed oRly estimate three parameters rather thaR m+...
However, we Rote that the disturbaRce term is:

Ý9.5Þ R t = P t ? VP t?1

so:

Ý9.6Þ EÝR t,R t?1 Þ = EßÝP t ? VP t?1 ÞÝP t?1 ? VP t?2 Þà
= EßP tP t?1 ? P tVP t?2 ? VP t?1

2 + VP t?1VP t?2 à
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If the original O t satisfied the basic assumption of EÝP t,P t?1 Þ = 0,
then the disturbance of the Koyck transform equation (9.4a),

R t, will not satisfy the basic assumption of non-auto-regression.
The estimates are therefore inefficient. (See R & M, p. 168).

Further,

Ý9.7Þ EÝR t,Yt?1 Þ = EÝP t ? VP t?1 ÞßJ + K0ÝX t?1 + VX t?2 + ...à
= ?VaPt?1

2 ® 0

so that (9.4a) also violated the basic assumption of inde-pendence
of the regressors and the disturbances , so that the estimated coefficient

V will be biased and inconsistent. (See Kmenta, p. 479).
The Koyck lag structure does reduce the number of observa-tions

lost and the number of parameters to be estimated, but in doing so, it
introduces two violations of the basic assumptions, i.e. auto-regressive
disturbances and independent variables correlated with the
disturbances. We could take standard fix-ups for these problems by,
first, using instrumental variables to deal with the problem
EÝR t,Yt?1 Þ ® 0 (as described in Kmenta, p. 479-80), but that does not
deal with the auto-regression of the disturbances. Here again a
standard fix-up for auto-regression disturbances could be taken. (Note,
as R & M point out, the usual Durbin-Watson statistic is inappropriate
to test for auto-regressive disturbances where a lagged dependent
variable is a regressor. See p. 123 for the corrected Durbin-Watson
statistic for this case. Also recall R & M’s cautions about the
usefulness of the standard fix-up since

p hat may be subject to serious sampling variability (see R & M,
pp. 72-77) ).

All this may be somewhat beside the point, however, since the
Koyck transformation will probably be an inferior choice for
distributed lag estimation in most cases. The most commonly favored
alternative is the Almon lag. The Koyck transformation is superior to
the Almon lag, as far as I can tell, in only one particular: it uses up
fewer observations (degrees of freedom). It is inferior to the Almon lag
in several ways: it imposes more severe restrictions on the form of the
lag structure (declining geometric); it yields inconsistent estimates,
unless corrected by instrumental variables or maxiWm likelihood
reformulations; it yields inefficient estimates unless corrected by
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generalized least squares.
Almon Lag
The Almon lag fits a lag structure of a given order of polynomial,

but does not restrict the form within that given order. For the Almon
lag, we reformulate (9.1) as:

Ý9.8Þ Yt = J + K0Ýg0X t + g1X t?1 + ... + gmX t?mÞ + P t

The g i are determined by the degree of the polynomial, the degree
being equal to the number of turning points we expect in the lag
structure, plus one, e.g., a cubic polynomial.

Ý9.9Þ g i = V0 + V1i + V2i2 + V3i3

gives a lag structure with two turning points:

Substituting (9.9) into (9.8), we obtain:

Ý9.10Þ Yt = J0 + K0ßV0X t + ÝV0 + V1 + V2 + V3ÞX t?1 + ÝV0 + 2V1 + 22V2 + 23V3ÞX t?2 + ..

which can be rewritten:
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Ý9.10aÞ Yt = J0 + K0V0Z t0 + K0V1Z t1 + ... + K0V3Z t3 + P t

where Z t0 = X t + X t?1 + ... + X t?m

Z t1 = X t?1 + 2X t?2 + ... + 2X t?m

Z t3 = X t?1 + 23X t?2 + ... + m3X t?m

In the case where there are m >number of V, the Almon lag saves
degrees of freedom. If we impose restrictions on the end points, i.e.

w1 = 0,wm = 0, we reduce the number of parame-ters further.
Picking the length of the lag can be done empiri-cally (see Kmenta, p.
494). Note that the transformation does not introduce correlation
between independent variables and the disturbance nor auto-regression
of the disturbances. Further, since there is no lagged dependent
variable in (9.10a), the usual Durbin-Watson test can be used and
corrections made if necessary.

X. Estimation of Equations in
Simultaneous Systems

A. Two examples of Simultaneous
Equations bias of OLS

(Kmenta p.302, 533; Beals p. 373-374; Kelejian & Oates
p.225-226; Rao & Miller p. 187-188; Frank p.307-310)

1. Consumption Function

Ý10.1Þ C t = b0 + b1Yt + U t

C t = consumption

Yt = income

I t = exogenou sinvestment

Ý10.2Þ Yt = C t + I t assume EÝI t,U t Þ = 0
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Substitute (10.1) into (10.2):

Ý10.3Þ Yt = b0 + b1Yt+U t + I t

Ý10.4Þ Yt = b0
1 ? b1

+ U t
1 ? b1

+ I t
1 ? b1

Multiply by U t and take expected values:

Ý10.5Þ covÝYt,U t Þ = EÝYt,U t Þ = E b0U t
1 ? b1

+ IU t
1 ? b1

+ U t
2

1 ? b1

= b0
1 ? b1

EÝU t Þ + 1
1 ? b1

EÝI t,U t Þ + 1
1 ? b1

EÝU t
2 Þ

= 1
1 ? b1

EÝU t
2 Þ ® 0

So estimates of
b1 and b1 will be biased and inconsistent.
2. Supply and Demand Functions

Ý10.6Þ qd = a1 + b1p + c1Y + U1 demand function, Y exogenous

Ý10.7Þ qd = a2 + b2p + U2 supply function

Ý10.8Þ qd = qs market equation

Substituting (10.6) and (10.7) into (10.8):

Ý10.9Þ a1 + b1p + c1Y + U1 = a2 + b2p + U2

Solving for p:

Ý10.10Þ p = a1-a2
b2 ? b1

+ c1
b2 ? b1

Y + U1 ? U2
b2 ? b1

Ý10.10aÞ p = f + gy + ep.y

multiply by W1

and taking expectation:
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Ý10.11Þ covÝp,u1 Þ = EÝp,u1 Þ = E a1-a2
b2 ? b1

u1 + c1
b2 ? b1

Yu1 + U1 ? U2
b2 ? b1

u1

= a1 ? a2
b2 ? b1

EÝu1 Þ + c1
b2 ? b1

EÝY,u1 Þ + 1
b2 ? b1

ßEÝu1
2 Þ ? EÝu1,u2, Þà

= 1
b2 ? b1

au1

(since EÝu1 Þ = EÝY,u1 Þ = EÝu1,u2 Þ = 0 by assumption).
So, estimates of a1,b1,c1 will be biased and inconsistent. Similarly

covÝp,u2 Þ ® 0 and estimates of a2,b2 will be biased and inconsistent.
The nature of the bias can be seen by applying OLS to (10.10) and

using (10.10a) as the auxiliary regression to estimate, for example,
b i :

Ý10.12Þ b! 1 =
> ep.yqd

> ep.y
2

Substituting from (10.6) for qd:

Ý10.12aÞ b! 1 =
> ep.yÝa1 + b1p + c1Y + U1Þ

> ep.y
2

= a1
> ep.y

> ep.y
2 + b1

> ep.yp
> ep.y

2 + c1
> ep.yy
> ep.y

2 +
> ep.yu
> ep.y

2

Since > ep.y = 0 [from normal equations for OLS estimate of
(10.10)] and > ep..y.P = ep.y

2 and >Y.ep..y = 0
by derivation of eP.Y.

Ý10.13Þ b! 1 = b1 +
> ep.yu1

> ep.y

Transforming (10.10) , we obtain the residuals from the auxiliary
regression:

ep.y = p ? a1 ? a2
b2 ? b1

? c1
b2 ? b1

Y = U1 ? U2
b2 ? b1

Therefore:

67



Ý10.14Þ > ep.y = > U1 ? U2
b2 ? b1

U1 ? U2
b2 ? b1

=
>u1

2 ? 2>u1u2 +>u2
2

Ýb2 ? b1 Þ2

and:

Ý10.15Þ > ep.yu1 = > U1 ? U2
b2 ? b1

u1 =
>u1

2 ? 2>u1u2

Ýb2 ? b1 Þ2

So substituting (10.14) and (10.15) into (10.13):

Ý10.16Þ b! = b1 +
> u1

2?2> u1u2

Ýb2?b1 Þ

> u1
2?2> u1u2+> u2

2

Ýb2?b1 Þ2

Assuming, as above,covÝU1,U2 Þ = 0 and taking expectations:

Ý10.17Þ E b! 1 = b1 + Ýb2 ? b1 Þ
au1

2

au1
2 + au2

2

We can see the simultaneous equations bias of b! , for OLS depends
on the variance of u1 relative to the variance of u2 as well as the
magnitude of b1 and b2. Since this does not diminish with sample size
increase, it is also asymptotically biased and inconsistent. (See R&M
p.189-192 for further development of this). Similar demonstration can
show E b! 1 = b1 + Ýb2 ? b1 Þ

au1
2

au1
2 +au2

2 . The correlation of P and u1 can

be described verbally (drawn from Beals, p.373). Looking at (10.6),
suppose u1is large. The qd must be large (if P and Y are not correlated
with u1) but since qd = qs, by (10.8), qs must also be large. Unless u1

is correlated with u2, which we assume is not the case and we assume
cov (u1,u2Þ = 0, qs can only be large if P is large. Therefore P and u1

are necessarily correlated.

B. Consistent Estimators of Structural
Equations

Since the OLS estimates of structural equations such as (10.6) and
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(10.7) will be biased and inconsistent due to the covariance of the
endogenous variables and the error terms, we naturally look for the
estimating techniques which remove this source of bias or, at least,
yield consistent estimators.

1. Indirect Least Squares (Instrumental Vari-ables)
(Kmenta p.551-55, Rao and Miller p. 201-212, Beals p.376-378,

Frank p. 312-315)
Since the endogenous variables on the right hand side is giving us

problems, it occurs that one way out of the problem might be to solve
the system of equations for the endogenous variables as dependent
variables determined solely by exogenous variables (recalling from the
algebra of simultaneous equations systems that this can be done). We
have already done this in (10.10) and we note that it contains
differences and ratios of all the structural coefficients of interest. We
note that (10.10) contains only exogenous variables on the right hand
side and so can be estimated by OLS without concern about
simultaneous equation bias. If we now solve (10.6), (10.7) for q,
(q=qd=qs) in reduced form, we get:

Ý10.18Þ q= a1b2 ? a2b1
b2 ? b1

+ c1b2
b2 ? b1

Y + u1b2 ? u2b1
b2 ? b1

Rewriting (10.10), the reduced form for p:

Ý10.19Þ p=E3 + E4 + v2

where:

E1 = a1b2 ? a2b1
b2 ? b1

E2 = c1b2
b2 ? b1

E3 = a1 ? a2
b2 ? b1

E4 = c1
b2 ? b1

We can now try to work backward for estimates of some of the
structural parameters we find, from the OLS estimates of (10.18) and
(10.19):
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Ý10.20Þ b! 2 = E! 2

E! 4
= c1b2

b2 ? b1
/ c1

b2 ? b1

â2 = E! 1 ? b! 2E! 3 = a1b2 ? a2b1
b2 ? b1

? b2Ýa1 ? a2Þ
b2 ? b1

= a2
b2 ? b1
b2 ? b1

So by estimating the reduced forms for q and p by OLS we can
obtain estimates of the structural parameters. These structural
estimates are consistent (see Rao & Miller p.203-207), but they are not
unbiased because:

EÝb2 Þ = E E! 2

E! 4
® E E! 2 /E E! 4

(See Beals footnote 3 p.377). See Rao and Miller p.201-212 for
discussion of comparative bias of direct and indirect least squares.

2. Two Stage Least Squares
(Kmenta p. 559-564: Rao and Miller p. 212-215; Kalejian and

Oates p.228,239; Frank p.326-328)
A second method of obtaining consistent estimators of structural

coefficients is to utilize two-stage least squares. Once again the
reduced form is utilized. The reduced form for the endogenous
variable, in our example y, on the right hand side and may be estimated
by OLS, i.e., we estimate (10.10) or (10.19).

Then:

Ý10.21Þ p!=E3 + E4Y

provides a variable which is correlated with p, but is uncorrelated
with u1 or u2, since we have subtracted off from (10.19)

v2 = U1?U2
b2?b1

. We can then use p! as an instrumental variable in
(10.7) to estimate b2. Substitute (10.19) into (10.7):

Ý10.22Þ q = a2 + b2p + u2 = a2 + b2Ýp! + v2 Þ + u2 = a2 + b2p! + Ýb2v2 Þ + u2

Ý10.22aÞ q = a2 + b2p! + ú2

Examining ú2we find

Ý10.23Þ EÝ ú2Þ = EÝb2v2 + u2Þ = b2EÝv2 Þ + eÝu2 Þ = 0
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and the independence of p! and u2 is established by:

Ý10.24Þ EÝp! ,ú2 Þ = EÝE3 + E4YÞú2 = EÝE3ú2 + E4Yú2 Þ
= E3EÝú2 Þ + E4EÝYú2 Þ
= E3EÝú2 Þ + E4EßYÝb2v2 + u2 Þà
= E3EÝú2 Þ + E4b2EÝYv2 Þ + E4EÝYu2 Þ
= 0 since EÝú2 Þ = 0 by 10.20. EÝYv2 Þ = 0,EÝYu2 Þ = 0

Therefore we can estimate (10.22a) without fear of simultaneity
bias, yielding a consistent estimator of b2. It is only consistent because

p! is an estimated instrument and sampling variability may cause it
to be biased in small samples.

3. Limited Information Maximum Likelihood
(Kmenta p.567-573, Maddala p.232-233)
Estimates by maxinum likelihood formed by writing (10.7):

Ý10.25Þ qs ? b2p = a2 + b2p + u2 or q8 s = a2 +u2

In writing (10.7) we have imposed the restriction that qs is
unrelated to Y and rewrite (10.7) as:

Ý10.26Þ qs = a2 + b2p + c2Y + u2

and transform to:

Ý10.27Þ qs ? b2p = a2 + c2Y + ú2 or q8=a2 + c2Y + ú2

then SSEq8 s
1 = > u2

2 SSEq8 s
2 = >Ýú2 Þ2

The likelihood ratio can be shown to be equivalent to:

Ý10.28Þ L=
SSEq8 s

1

SSEq8 s
2 =

>Ýq ? b2p ? a2 Þ2

> q ? b8 2p ? a2 ? c2Y
2

which, given the c2=0 in the population, can never be smaller than
b2 are chosen to minimize (10.28).
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C. The Identification Problem

1. Breakdown of the indirect
a. Indirect Least Squares
(Beals p.382, 383;Maddala p.220-223)
i. Note above that we used indirect least-squares obtain estimates

of
b2 and a2 but looking back at (10.18) and (10.19), we can find no

way to combine the
^1,......^4 to obtain estimates of a1 and b1

ii. If however we add a variable to (10.7) so we now have:

Ý10.29Þ qd = a1 + b1p + c1Y + u1

Ý10.30Þ qs = a2 + b2p + c2R + u2

We get the reduced forms:

Ý10.31Þ q = E1 + E2Y + E3R + v1

p = E4 + E5Y + E6R + v2

where E1 = ab ? a2b2
b2 ? b1

E2 = c1b2
b2 ? b1

E3 = ?c2b2
b2 ? b1

E4 = a ? a2
b2 ? b1

E5 = c1
b2 ? b1

E6 = ?c2
b2 ? b1

Now:
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Ý10.33Þ b! 1 = E! 3/E! 6 = ?c2b2
b2 ? b1

/ ?c2
b2 ? b1

b! 2 = E! 2/E! 5 = c1b2
b2 ? b1

/ c1
b2 ? b1

c2 = E! 6 b! 2 ? b! 1 = ? ?c2
b2 ? b1

b! 2 ? b! 1

c1 = E! 5 b! 2 ? b! 1 = c1
b2 ? b1

b! 2 ? b! 1

â1 = E! 1 ? b! 1E! 4

â2 = E! 2 ? b! 1E! 4

iii. Suppose instead of adding an exogenous vari-able, R, to qs,
(10.7), we add it to qd, (10.6):

Ý10.34Þ qs = a1 + b1p + c1Y + d1R + u1

Ý10.35Þ qs = a2 + b2p

The reduced forms are:

Ý10.36Þ q = E1 + E2Y + E3R

p = E4 + E5Y + E6R

where:

where E1 = a1b2 ? a2b1
b2 ? b1

E2 = c1b2
b2 ? b1

E3 = ?a1b2
b2 ? b1

E4 = a ? a2
b2 ? b1

E5 = c1
b2 ? b1

E6 = a1
b2 ? b1

Now for b! 2 we get two estimates:

Ý10.37Þ b! 2 = E! 2/E! 5 , b! 2 = E! 3/E! 6

These two estimates need not be equal and for each of these
estimates we get an estimate of

â since â2 = !̂ ? b! 2 !̂ 4. Also we are unable to obtain estimates for
a1,b1,c1, or d1. When the indirect least squares fails to give us
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estimates of the structural equation, as for the demand equation
(a1,b1,c1) in (10.6) and (10.34) above we say the equation is under

identified. When it gives us unique estimates for a structural
parameter, as for the supply equation in (10.6) and (10.34) above we
say the equation is exactly identified. When it gives us multiple
estimates for the structural parameters, as for the supply equation in
(10.35), we say the equation is over identified.

2. Breakdown of Two-stage Least Squares
Suppose we tried to use two stage least-squares to estimate (10.6).

We would estimate:

Ý10.38Þ qd = a1 + b1 p! + v1 + c1Y + u1

Ý10.38aÞ qd = a1 + b1Ýp!Þ + c1Y + ú1

However, recall that from (10.21):

p! = E3 + E4Y

So that p! and Y are perfectly collinear, and if we try to estimate
(10.38a) by OLS we will run into perfect multicollinearity.

Thus when the structural equation is under-identified, two stage
least squares breaks down.

3. Linear Independence and Identification
Another way of looking at the identification problem is in terms of

the linear independence of the equations. In the case of (10.6) and
(10.7) for example, we can ask whether each equation is
distinguishable from a linear combination of the two equations.

Form a weighted average of the two equations:

Ý10.39Þ q = wÝa1 + b1p + c1Y + u1 Þ + Ý1 ? wÞÝa2 + b2p + u2 Þ
= a 7 +b 7 p + c 7 Y + u 7

where a 7= wa1 + Ý1 ? wÞa2, b 7= wb1 + Ý1 ? wÞb2,c 7= wc1,u 7= wu1 + Ý1 ? wÞu2

Estimating equation (10.39) would be indistinguishable from
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estimating equation (10.6), the demand equation. Thus if we did
estimate it we would not know whether we had gotten estimates of the
demand function or a weighted sum of the demand and supply
functions.

(Note Rao & Miller p.191 distinguish this identification problem
from the indirect least squares bias issue).This is illustrated in the
familiar diagram used to illustrate the identification problem.

If we estimate from the observed
qd = qs points (the o points), we may obtain a line such as the

dashed line which is neither the supply nor the demand equation.
However (10.39) does not look like (10.7) unless w = 0. Thus we

cannot generate an equation which looks like the supply equation from
a weighted average of the supply and demand equa-tions. Thus when
we estimate (10.7) we know that we have estimates of the supply
function only. The supply function is identified. This is usually
illustrated as follows:
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Since the demand curve shifts with the differences in Y and the
supply curve does not, we can observe points along the supply curve
unambiguously separated from the demand curve.

Note that in discussing these problems of identification we have
not discussed simultaneity bias. Thus if we estimated (10.6) by OLS
we would have two problems: first, as just dis-cussed we would not
know whether we had estimated a structural demand equation or a
weighted average of the structural demand and supply equations, i.e.
the equation is under-identified; second, the OLS estimates would be
subject to simultaneity bias since

covÝp,u1 Þ ® 0. If we try to deal with the second problem,
simultaneity bias, without recognizing the first problem, our estimation
methods (indirect least squares or two-stage least squares) break down
as we’ve shown in C.1 and C.2 above.

If we estimate (10.7) by OLS, we know we have identified a
supply equation, but our estimates are subject to simultaneity bias
since

covÝp,u2 Þ ® 0. We can use indirect least squares or two-stage
least squares in this case to get consistent estimates without having the
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methods break down.
It is important to see that the simultaneity bias problem and the

identification problem are distinct. We can have simultaneity bias
problems even when we don’t have identification problems.

D. Rules for Identification
(Kmenta p.539-550; Kelejian and Oates pp. 244-253; Frank

p.315-323; Maddala pp. 223-225, 234)

1. The Order Condition (Counting Rule)
Let us line up the alternative demand and supply equations used

above and indicate their identification status:

Ý10.6Þ qd = a1 + b1p + c1Y + u1 underidentified

Ý10.7Þ qs = a2 + b2p exactly identified

Ý10.29Þ qd = a1 + b1p + c1Y + u1 exactly identified

Ý10.30Þ qs = a2 + b2p + c2Y + u2 exactly identified

Ý10.34Þ qd = a1 + b1p + c1Y + d1R + u1 under identified

Ý10.35Þ qs = a2 + b2p + u2 over identified

We can see that qs is exactly identified when there is exactly one
exogenous variable excluded from qs but included in qd. In (10.7) and
(10.30), only Y is excluded from qs and included in qd. Likewise qd is
exactly identified for (10.29), where R is excluded from qd but
included in qs.

Over-identification occurs for qs in equation (10.35) where both Y
and R are excluded from qs but included in qd (10.34). [Note that
when this occurred indirect least squares gave us two estimates of a2

and b2. One was associated with the reduced form coefficients of Y,
^2 and ^5, and the other with the reduced form coefficients of R,

^3 and ^6. Thus we have more exclusions than we need to identify the
supply equation.]

Under-identification occurs for qd in (10.6) and (10.34) because
there are no exogenous variables excluded from qd which are included

77



in qs.
The general counting, or order condition rule, is that to identify

(that is exact or over identification) a given structur-al equation the
number of exogenous variables excluded from the given equation must
be at least as large as (that is as many or more than) the number of
endogenous variables included in the structural equation, less one.
[Note: this is for an equation written in irregular form. The rule is
sometimes discussed in terms of r.h.s. variables when written in
explicit form. Then the number of r.h.s. endogenous variables are
counted.

2. The Rank Condition
The order condition is necessary but not sufficient. Consider a case

where we have a system of 3 simultaneous equations involving three
endogenous variables y1,y2,y3 and three exogenous variables z1,z2, z3 .
Represent this system by the following table (Maddala p.223):

Y1 Y2 Y3 Z1 Z2 Z3

Ý10.40Þ equation1 x 0 x x 0 x

Ý10.41Þ equation2 x 0 0 x 0 x

Ý10.42Þ equation3 o x x x x 0
The rule for identification is: delete the particular row of the

equation in question. Then pick up the columns corresponding to the
elements that are zero in the deleted row. If we can form a matrix of
rank (G-1), where G is the number endogenous vari-ables, from these
columns, then the equation is identified (i.e. neither exact or
over-identified). In the example (10.40)-(10.42), G=3, G-1=2. Now
consider equation 1 (10.40). There are two included endogenous
variables, Y1, Y3, and one excluded exogenous variable, Z2, so the
order condition (counting rule) indicates it is exactly identified.
However, delete row 1 and from the matrix of the elements from row 2
and 3 corresponding to the zeros in row 1, i.e. the columns Y2 and Z2.
We get
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Y2 Z2

eq2 0 0

eq3 x x
This is a G-1 matrix but its rank is only 1 since det
0 0

x x
= 0.This means that equation 1 is not linearly independent

of equa-tions 2 and 3. Thus even though the order condition indi-cates
exact identification, the rank condition indicates under-identi-fi-cation.
For the second, delete row 2 and form the matrix from the elements in
row 1 and 3, equivalent to the zero columns of row 2:

Y2 Y3 Z2

eq1 0 x 0

eq3 x x x
The rank of the matrix is 2 (= G-1) since we can form at least one

2x2 submatrix whose
det®0 . So the equation is identified by both order and rank criteria.
For the third equation, the matrix is:

Y1 Z3

eq1 x x

eq2 x x

3. Identification through Other Restrictions on the
System

Thus far we have discussed identification primarily in terms of
exclusions of variables from equations in the system. Howev-er, it is
important to be aware that identification can also be achieved by other
restrictions on the system of equations. Other restrictions can take the
form of restrictions on sum’s of coefficients (see Maddala p. 225) or
on the variance-covariance matrix of disturbances (see Kmenta p.547,
Maddala p. 226). Non-linearities in equations and non-linear
restrictions on coeffi-cients can also result in identification in case
where the order condition appears not to be satisfied (see Maddala
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p.228).

XI. Miscellany

A. Partitioning R2

We use (3.20) to substitute for by1.2 in (4.19) and get:

Ý11.1Þ > y .12
2 = Ýby1 ? b12by2.1 Þ> x1iy i + by2.1 > x2iy i

= by i > x1iy i + +by2.1 > x2iy i ? b12 > x1iy i

From working from (4.11) we get:

Ý11.2Þ > y .1
2 = b2y1 > x1i

2 = by.1

> x1iy i

> x1i
2 > x1i

2 = by.1 > x1i

which we can substitute into (11.1) to get:

Ý11.3Þ > y .12
2 = > y .1

2 + by2.1 > x2iy i ? b12 > x1iy i

We now substitute (11.3) into (4.20):

Ý11.4Þ Ry.12
2 =

> y .12
2

> y .i
2 =

> y .1
2

> y .i
2 +

by2.1Ý> x2iy i ? b12 > x1iy i Þ
> y .i

2

= Ry.1
2 +

by2.1Ý> x2iy i ? b12 > x1iy i Þ
> y .i

2

Now, however, if we had begun by substituting in (4.19) for
by2.1, we would have come out with:

Ý11.5Þ Ry.12 = Ry.2
2 +

by1.2Ý> x1iy i ? b12 > x2iy i Þ
> y .i

2

If looking at (11.4) we attribute the first term on the right hand side
to X1 and the second to X2, we get a different portioning of Ry.12

2 than
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if we use (11.5) and attribute the first term on the right hand side to

X2and the second to Ry.2
2 ®

by2.1 > x2iyi?b12 > x1iyi

> y.i
2

X1. This is because

in general It will only be true if b12 = 0. So we cannot uniquely portion
Ry.12

2 and attribute a portion to each variable.

B. Several Alternative Measures of
”Impact” of a Variable, or Group of
Variables

Added Variance

Ý11.6Þ >X1iYi + b12 >X2iYi = > X1i ? b12 >X2i Yi = > e1.2iYi

Separate out the second term in (11.5) and substitute (11.6):

Ý11.7Þ
by1.2Ý> x2iy i ? b12 > x2iy i Þ

> y .i
2 =

by1.2 > e1.2iYi

> y .i
2

Define:

Ý11.8Þ jy1.2 = by1.2

> e1.2iYi

> y .i
2 6 S1.2

2

S1.2
2 = by1.2

> y .i
2 6

> e1.2iYi

S1.2
2 S1.2

2

= by1.2

Sy
2 6 by1.2 6 S1.2

2

= by1.2
2 S1.2

2

Sy
2

K

Divide (3.1) by Sy
2,where Sxk =

> yi
2

n?1

Ý11.9Þ Yi
Sy

= by1.2 x1i

Sy
+ by2.1 x2i

Sy
+ e .12i

Sy

multiply by Syk

Syk
, where Sxk =

> xki
2

n?1 :
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Ý11.11Þ Yi
Sy

= by1.2 Sx1

Sy

x1i
Sx1

+ by2.1 x2i

Sy

x2i
Sx2

+ e .12i
Sy

So the beta coefficients are coefficients in a regression where each
variable is divided by its standard deviation and describe how a one
standared change in say x, causes a magnitude change in Y measured
in standard deviations.

Partial r
By analogy from (4.12), R2:

Ý11.12Þ rÝy.2ÞÝ1.2Þ
2 = by1.2

2 > e .12i
2

> e .2i
2 = by1.2

2 S1.2
2

Sy.2
2

Comparison:

Ý11.13Þ r = by1.2
S1.2
Sy.2

d = by1.2
S1.2
Sy

;By1.2 = by1.2
S1
Sy

;By1.2 = ry1.2
S1.2
Sy.2
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