The Elements of Regression Analysis

R.G. Hollister

|. Objective

My objective in these notes is to introduce the basic elements of
regression analysis in as direct afashion as possible, emphasizing,
wherever possible, more intuitive ways of looking at estimating
procedures and eschewing most of the refinements of underlying
theory.

The objective of regression analysis is to determine approximative
systematic relationships of many variables, given the joint distribution
of two or more variables.

1. Means, Conditional M eans, and Simple
Regression

A. Mean

Given adigtribution of a variable, we often wish to select a” most
representative,” "most likely,” or "expected” value for that variable.
Sincethe variable is distributed over arange of values, we know any
single value we choose will often be " misrepresentative” of the ”most
likely” value of any single observation we might pick from the
distribution. Thus we like to select the value which minimizes the
" misrepresentativeness’ or ”error.”
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Let us call the value we select the estimator of Y which we will
label E(Y). We use the notation of Y; for any single value selected
from the distribution of values of Y. When we choose E(Y) as the
estimator for the value of Y, the error we make in using E(Y) for any
Yi is:

Y0.1b e =RY; ? EYYpa

The extent to which the estimator E(Y) is " misrepresentative” over
the whole distribution of Y might be represented by the sum of the
errors for each observation, e.g., with n observations:

n
¥0.2p e =e +ey+e3+..e,
i=1
The problem is to develop a criterion by which to select a” best”
value for E(Y). One reasonable criterion would be to choose E(Y) so

as to make the sum of errors, as small as possible. Therefore, a
criterion of choosing E(Y) so that:

n
¥0.3p =€ =0

i=1



would seem reasonable.

We can write:
n n n
VO.4b e = = Y, ? EYYba = = RY; ? nEYYPi
i=1 i=1 i=1

since E(Y) is a constant which enters with the same value in each
of the n terms of the summation. We can write (0.3) as:

n n
YO.SD = e = = Yi ? nEYYD =0
i=1 i=1
Solving for E(Y), we get:

n

. . =_ Y,
Yo.6p EYYp = —IL

which is the average or mean value for Y. Therefore our
justification for using the mean as an estimator is that it gives us the
smallest absolute value of the sum of errors over the whole
distribution. We note in passing that another criterion might be to
choose E(Y) so that it gives aminimum for the sum of squared errors,
=" e?. Using calculus we get:

n n
¥0.70  min=>e? = =}Y; ? nEYWa% = 0

i=1 i=1
n 2 n n
Y _ =11 — 9 D EYVDY = ? -2 nEYYD3 =
Y0.8p JEVYD .ZEBY. ? EYYPa 22 EBY. ?nEYYPa = 0
and solving for E(Y):
, , =Y,
10.9p  EfYp = 5

=Y. S
Therefore, the mean,——, is the value that minimizes the sum of
the squared errors as well as the absolute value of the sum of errors. In

. . =Y . —
subseguent notation we will often refer to —— by the notation Y.




B.The Conditional Mean

Now, if for each observation we take note of two characteristics,
we have distributions for two variables tied together by their
association with the common observation points (Yi, Xi) - thisisajoint
distribution of the variables Y and X. We wish to look at relationships
between the two variables in the joint distribution. We can represent
their joint distribution by a scatter diagram.

' Figure B
Y =u

We could simply look at the mean of each ditribution , X, Y.but
this wouldn't tell us much about how one varies as the other varies.
We would prefer to know, for example, given avalue of X, X;, what is
the ”likely” value of Y. We can tak about the " likely” value of Y given
X; asthe ” conditional expected value,” EYY P X;b . For example:
given aperson’s age, what is the most likely value of their income? We
might anticipate, following the reasoning from the previous section,
that the best estimator is the conditional mean of Y given X.

We can think of the scatter diagram as giving a separate
distribution of each value X, asin Figure C.
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The function which gives the ” conditional expected value of X”, as
indicated in Figure C is sometimes called the ” cell mean function.”

We may wish to generalize the relationship between the expected
valueof Y and given value of X in asomewhat handier form than
provided by the " cell mean function.” To do this, we make some
assumption about the form of the relationship between 'Y and X. The
simplest assumption isthat it is linear.

, . a
Y0.10p EYYP Xipb=Y; =a+ in

(Other forms can be assumed and the logic of estimation carried
out inasimilar fashion). Asindicated in Figure D, the linear regression
function can be thought of as a smplification of the " cell mean
function.”



Figure D
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If we used the " cell mean function” we would have to calculate a
separate conditional mean for each value of X;. This would be

cumbersome both to calculate and to use for analysis. Using the linear

regression line we need select only two vaues: a, the intercept, and b,
the dope of the line.

Figure E

-,
Yi=a+bXi

The linear regression is not quite as accurate as the " cell mean
function” but it is easier to calculate and handle.



C. Simple Regression

The observed value of Y; from the observed joint distribution
(Yi,X;) will differ from the value predicted from the linear regression
function, Y; = a+ bX;,just as, in the case of the single distribution, the
observed value Y; differed from the predicted value E(Y). Thusthe
"eror’:

, a8
YL1b e =YY; ? Yib = YY; ?a? bX;p

Now, following the analogy to selecting the best value for E(Y),
we would like to pick the ”best” valuefor Y;. SinceY; = a+ bX;, the
problem is to choose the " best” values for aand b.

Following the analogy to the case of the mean above, one
reasonable criterion would seem to be to choose the values so that
>in=1 e = 0. Thus,

, a ,
1120 =e==(Y2Y) =>VYi?2a?bXp=Y,?na?b>=>X =0

However, there are lots of combinations of values aand b which
=Y
satisfy equation (1.2). Consider, for example, a= nY and b=0.

Substituted in (1.2):

>ei=>(Yi? nY' ?OYXiD)=>Yi?n nY' =0

Diagrammatically this function would look like Figure F1:
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Thisis clearly not avery good estimating function. We see that
though the summation of errorsis zero,(=e; = 0p, thisis achieved
because positive errors to the right of Xcancel out against the negative
errorsto the left of X .

In Figure F2, we show a particular observation (Y i Xpand how the
error is the difference between the regression line point for (Y X;)and
the actual value of Y';.
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We can see that with the regression function using a= >n and
b=0, most of the observations to the right of X, will have positive errors
(e; > Op, while most of the observations to the left of will have
negative errors (e; < Op. Now multiply each value of X; times the error
associated with it for the given regression line, i.e., € X;. Take the sum
of & Xi, = e X;. Sincethe vauesof X; totheright of X are larger than
those to the left of X, the predominately positive values of e, to the
right of X are multiplied by larger values than the predominately
negative values of g to the left of X, and = e X; will be positive. Thus
when the regression line as in Figures F1 and F2 is clearly too flat,
relative to the observations,

Y1.3p eXi >0

If the regression line had too sharp adope, as indicated in Figure
F3, since large values of X to the right of X multiply mostly negative
values of e; and small values of X to the left of X multiply mostely
positive values of g,

Fi F3
g |gur|e

|

|

I

I

X X

Then, in general, the errors to the right of would be negative, to the

left of , the errors would be positive. Since, in generdl, in, the negative
errors would be multiplied by larger values of than the positive errors



we would expect that:
V1.4 =>eX <0

If we are to avoid both aregression line too flat and one too steep,
it seems reasonable to impose a second condition that:

V15p =eX =0
= >YYi ?a? inDXi = >YYiXib?a>YXib?b>Xi2 =0

If we now combine equation (1.2) and equation (1.5) as conditions
to be met, we have two equations with the two values to be selected, a
and b, inthem. We recall from algebra that, in general, two equations
will uniquely determine two unknowns, so we can solve (1.2) and (1.5)
simultaneoudy for the values of aand b.

Multiply (1.2) by = X; and (1.5) by nto get:

1160 =Y, =X ?na=>X ?b(>Xi)2 =0

N=YX;?na=>X;?bn=>X2=0
Subtracting the first equation from the second we get:
YL7b n=>VYiXi 2 =Y, =X 2bn=X2+b/=X;p?2 = 0

Solving for b we get:

_N=YX?=Y =X

¥1.80 b ,
n=>X2?Y>X;b?

Rearranging equation (1.2) we see:

=Y, b= X
a= ?
n n

and we can substitute b from equation (1.8) into equation (1.9) to
get the expression for a.
We have thus arrived at a choice of values for the regression line

10



parameters aand b by imposing the conditions = e; = 0 and

=eX; = 0. We now show quickly that if we adopted the criterion of
choosing aand b so as to minimize the squared error, we would arrive
at the same estimates. Working from equation (1.1) we get:

¥1.10p =e? = =VY; ? a? bX;b?

Minimizing equation (1.10) with respect to aand b we get:

, = e? ,
{1.11p //ae' = 22 =Y, 2a?2bX;p = 0
=2 ,
//—be' = 22 ={Y, 22?2 bX;pX; = 0

which can be rewritten as;
V1120 0= =VY;?na?b>=X; =0
0= >YiXi?a>Xi?b>Xi2

But these are exactly the same as equations (1.2) and (1.5). These
are often referred to as the normal equations of the least sum of
sguares regression. Solving these for the values of b and a, we would
get the same expressions as equations (1.8) and (1.9). From the
intuitive development of equations (1.2) and (1.5), we can see why the
least sum of squared errors criterion is utilized. The criterion of
minimizing the absolute sum of errorsis not sufficient aone. There are
many values for aand b which will give = ¢, = 0 because large
positive errorsin the sum cancel out large negative errors (in fact any
line passing through this point (Y, X} will meet this criterion). Thus we
need an additional criterion to pick the ”best” estimator from among
these many. The estimator values of aand b which cause > e X; = 0
will give aline which is neither too flat nor too steep. When we use the
overall criterion of minimizing the sum of squared errors, since the
errors are squared before summing, positive and negative errors don’t
cancel out the summation. When we minimize the sum of squared
errors, we arrive at these two conditions. The two conditions give two
equations in two unknowns which can be solved for unique values of a
and b. This then is the method of least squared error smple regression.

11



It defines the linear relationship between'Y and X which minimizes the
sum of the squared errors made when that line is used to estimate a
vaueof Y, (Y b, for any given value of X, X;.

D. Regression in Deviation Notation and
Moment Notation

It is useful to transform some of the relationships above into a
"normalized” form by redefining the variables in the joint distribution
in terms of deviations from the mean.

210y, = (Y ?Y)

¥2.2p x, = (X ? X)
Taking equation (1.2) dividing by n and transforming, we get:

, =Y, b>X; — _
V230 5~ =a+—F—orY=a+bX

Transforming equation (1.1), we get:

Y24p Y, =a+bXi+e
Substituting (2.3) and (2.4) into (2.1),

¥25p y. = (Yi?Y) = [Ya+bX +eb? (a+bX) ] =b(X ?X) +¢
= bxi + €
Thus,
¥2.6b € =Vy; ? bx;p

and

Y270 =e? = =Vy; ? bx;p?

Minimizing (2.7), we get:

12



, /e? _ , :
Y2.8p b - ?2 =Vy; ? bxipx; = 0

Y290 =Syx?2b>=>x?=0
whichis equivaent to:
Y2100 =exi = =yixi?2b=>x?=0
Solving for b:
= YiXi

Y2110 b= >
=

Of course equation (2.10) is equivaent to equation (1.5) and
equation (2.11) is equivalent to equation (1.8).

Note that in deviation form, the parameter a disappears from the
regression line. This is because in transforming the observations to the
deviation-from-the-mean form, we have in effect shifted the axis from
the point (0,0) to the point, (X,Y) asindicated in Figure G.

Figure G
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Therefore in the deviation form of the regression line, the intercept,
a, is by definition equal to zero.

These expressions in deviation terms can be written in terms of
moments about means, and the moment notation sometimes smplifies
presentation. The first moment about the mean is defined as:

Y2120 My = =>(X; ?X) = =>x
The second moment for asingle variable distribution is:
Y2130 My = = (X ? X) (Xi ?X) = =>x?

The second moment for ajoint distribution of two variables X and
Z isdefined as:

Y2.14|3 sz = >(Xi 7)_(> (Zi 72) = >XiZi
We can rewrite equation (2.9) in moment notation as:
¥2.15p My, ? bMy = 0

and equation (2.11) can be rewritten:

{2160 b=-Me

I11. Multiple Regression

Thusfar, we have developed our discussion of regression analysis
around the idea of getting an estimator of a particular variable Y which
will give us the most likely value for any given observation. We noted
that while the mean is a good estimator, if we have some information
about another characteristic, X, associated with a given observation, i,
we can do better in predicting Y by using the conditional mean
EYY P X;b, and we approximate this with asimple linear regression
equation. By the same logic, however, if we know more than one
characteristic, say X, and X 2, we should be able to do even better in

14



predicting Y by estimating the conditional expectation EYY P Xy Xyib .
This is one reason for going on to develop multiple regression analysis.

Another reason we may be interested in regression anadysis is that
we are interested in the impact of a given independent variable, say X1,
on the dependent variable Y. Thus, our interest focuses on equation
(0.10) for example, not so much of E(Y P Xpas on the lope coefficient
b which tells us how a change in X of one unit is likely to change Y . If
we are interested only in the effects on X, on Y it might seem that the
simple regression we have aready devel oped might be sufficient, but
thisis not so. Thereason it is likely to be insufficient is that other
factors, say X, which are systematicaly related to Y, may also be
related to X ;. If thisis the case, the effect we estimated by a smple
regression of Y on X, aone may be mideading. X1 may be "taking
credit for” some of the effects on Y which are redlly due to another
factor, X2, withwhich it is partially related. For example, supposeY is
test scores of students in elementary schools and we are interested in
the effect of per pupil expenditures X ; on test scores. A simple linear
regression would give us an estimate, e.g., b in equation (2.5), of the
effect on test scores of adollar increasein per pupil expenditure.
Would this be areliable estimate of how much test scores would be
likely to riseif we raise expenditures one dollar? Well, we also have a
general impression that children’ s test scores are related to family
background, say as measured by family income, which we will call X».
We aso know that since schools are financed by the property tax,
communities with higher than average family incomes are likely to
have higher than average expenditures per pupil. That means X 1, per
pupil expenditure, and X, family income, are likely to be positively
related. How can we be sure that when we estimate the smple
regression of Y, test scores, and X 1, per pupil expenditure, we are not
really getting an estimate of the relation of X », family income, to test
scores?

We would wish to separate the effects of X, on'Y from the effects
of X (and other independent variables) on Y, in order to be able to
estimate the "true” net effect of X, on Y. Since the problem is that X ;
and X, (or other independent variables) are interrelated, it would seem
logical to first take account of the relationship of X1 to X, (and others)
and then take that part of X, that is not related to X, (or others) and
see what effect it hason Y. Thisis the essential logic we will useto

15



develop multiple regression estimates. (Then we will come back and
derive them by the least-squared error criterion to get and show the
estimators are the same).

Let us take the case of ajoint distribution of three variables: Y,
which we'll treat as the dependent variable, and X4 and X ziWe wish
to estimate the linear multiple regression function:

Yi =a+t bYl.lei + bY2.1X2i * €y
which we rewrite in deviation form:
¥3.1p Yi = bYl.lei + bY2.1X2i * €y

In the notation used here, the subscripts before the dot indicate the
relationship of the coefficient represents and the subscripts after the dot
indicate the other variables controlled for elsewhere in the estimating
equation. For example, by, ,, is the independent, or "net”, effect of X1
ony, controlling for the influence of x, ony. For the error term, the
notation indicates that this is the estimated error in'y for observation i
once we have alowed for the estimated systematic effect of x4; and X»;
ony.

Now, following the logic sketched out above, we first take account
of any systematic relationship between the independent variables by
estimating a Ssmple regression relating X1 and Xa.

¥3.2b X3 = bioXoi + €1

We will call this equation the auxiliary regression. Following our
notational convention, b, is the estimated relationship between x; and
X2 (since no other variables enter the relationship in (3.2) thereis no
dot in the subscript for b).

From the formulae (2.11) and (2.16) developed for smple
regression, recaling that in this case x; is the dependent variable and
X2 iIs the independent variable, we can write down direct the
expression for by, in (3.2):

X1iX2i My,x,

¥3.3p by = — =
' 12 - >X%I B MX2X2

and then rewrite (3.2) as:

16



o

{3.4b e1n = Xy ? bioXa = Xuio Rui

We see that g1 5 istheresidua value of x; for observation i after
we subtract out Qli , that part of x3; which is systematically related to
X9i.

Now we can treat e; » itself as avariable which varies from one
observation to another. To facilitate understanding of this use of e;, as
avariable, it may be useful to think of the basic data array using
hypothetical numbers written in a table as follows:

ObservationNumber 'Y X1 X5

1 79.0 195 831
2 71.0 180 744
3 61.3 14.7 63.8
4 493 114 487
5 51.9 122 520

If we estimated (3.2) for this data, we obtain:
X1 = 24Xy + €12

Using this relationship in equation (3.4), we can generate e; 5

values and have anew data array:
ObservationNumber Y X1 X2 e

79.0 195 831 2.03
71.0 18.0 744 .55
61.3 14.7 63.8 ?.61
493 114 487 .12

5 519 122 520 .13

€12 gives usthe sort of variable we seek to estimate the net effect
of X3 on'Y sinceit represents variation in X; across observations which
is unrelated to variation in X, across observations. e 5 IS sometimes

referred to as the orthogonal part of x;.
Using el.2, we can now estimate a Ssmple regression relating it to
y:

A W DN P
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Y3.5|3 byl_2i €1 t eYV’l.zpi

We use the parenthesis in the subscript to remind us that we are
using a variable developed viathe auxiliary regression (3.2).

Once again, applying directly the smple regression formulae
(2.11) and (2.16), we can write down the expression for the coefficient
bYl.z :

=Yi€ia Mye,,

Y3.6b byv’l.zb = >e%_2i = Mel.Z,e1-2

by..,, IS an estimate of the relationship of y to x; net of any indirect
influenceon 'Y of x, operating through x,’ s relationship to x;. Thisis
because in creating e; » we purged x; of apart systematicaly related
to Xo.

Now we do some rewriting of (3.6) to get it into aform readily
comparable to the usual textbook formula for a multiple regression
coefficient.

First, rewrite the numerator of (3.6) using (3.4)

¥3.7p = Vi€12i = = inxli ? bioXsi b

Y¥3.7ab = = yixai ? b = yixa
Substitute (3.3) for baa:
, = X1i X2i = ViXoi
Y3.7bb = >in1i ? 172 > YiXa
= x5
In moment notation:
B0 =My, ? Pl
XcX2

Now, rewrite the denominator of (3.6) using (3.4):

18



Y38|3 > ef_z = >YX1i ? b12X2i|32
== X% ? 2b1o = X1iXgi + b%z = X%i
In moment notation:

Y38a|3 =M X1X1 7 2b12MX1X2 + blZMXZXZ

Substitute (3.3) for b12:
Y 2My,x,M M2 .M
38b = M 7 X1X2  YIX1X2 + X1X2 'VIXoX2
Y p X1X1 Moo Moo,
M 2
= 2 X1X2
M e M X2X2

Now substitute into (3.6) the expression for the numerator (3.7b)
and the expression for the denominator (3.8b) to get:

MxyxoMyx,
Y — Mxox, — M yX1 M X2X.2 ?M X1X2 M yX
¥39p =My, ? = 2
M X1 X 7 1% X1X.2Mx2x_2?M§1x2
172 Miox 5

We have developed an expression for the relationship of y and x;
by "netting out” or controlling for x, through the auxiliary regression.
Now we derive an expression for the multiple regression coefficients
by,, in(3.1), using the alternative logic of minimizing the squared
errors in the multiple regression equation (3.1). We transpose (3.1) to
get ey.15 on the left hand side.

¥3.10p & = Vi ? bY1.2X1i ? bY2.1X2i
Squaring and summing over i we get:
y3.11p = e32/.12i = >Yy| ? byl_lei ? by2_1X2i|32

Here we may proceed by analogy to the smple regression case and
simply impose the conditions for the normal equations:

19



= € = 0 = €y X1 = 0 = €y, Xoi = 0

Recall that the logic of these was that the first condition yielded the
least error by forcing the line through the joint means of Y and X, the
second assured that the regression equation did not have either too
much positive or too much negative tilt in the X ; plane, and the third
assured us the same in the X, plane.

Or, dternatively, we can derive the normal equations by
minimizing (3.11) with respect to the coefficients, obtaining:

, /=>¢e?, ,
¥3.12ap ——22 = 22 =Vy; ? by, Xy ? by, XabXz = 0
/ bYl.z
, /=>¢e?, ,
¥3.12bp Tl-z' = 22 =>Vy; ? by, ,X1i ? by,, XaibXa = 0
Y21

which, after dividing through by -2, can be written:

¥3.13ap  =>Vy; ? by, X1 ? by, XaibXsi = =€y, %1 = 0

¥3.13bb  =Vy; ? by, Xai ? by, XoibXa = =€y, X3 =0

In moment notation, these become:

¥3.14ab My, ? by, ,Myx, ? by, Myx, = 0

¥3.14bb My, ? by, ,Myyx, ? by, My,x, = O

To solve (3.14a) and (3.14b) simultaneoudy, we multiply (3.14a)
by My.x,and (3.14b) by My, x,and subtract the latter from the former:

¥3.150  YMy, Mok, 2 M2, bby,, = VM, My, 2 Myix, My, P

or

Myxl MX2X2 ? MX1X2 Msz

¥3.16p by, =
12 M X1X1 M XoX2 ’) M )2(1X2
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whichisthe same as (3.9), so

bYl.z = bYV’l.zu

We derived by, ,, by using the auxiliary regression (3.2) to obtain
that part of x1 which was uncorrelated with x», labeled e; », and then
running a smple regression between y and e; », yielding the expression
for by,,,, givenin (3.9).

We derived by, , by adifferent route, using the same logic we had
used in deriving the mean as the estimator which gave us the |east
error and the simple regression coefficients by as the conditional
estimator of y given x which gave us the least error. Since in amultiple
regression equation, such as (3.1) we have more than one independent
variable, and therefore more coefficients to estimate, we have to add to
the normal eguations one more equation for each additional coefficient.
In the case of (3.1), we have the normal equations
=g = 0,>eXxy; = 0,>exy = 0,which are analogousto the
normal equations for smple regression [equations (1.2) and (1.5)].
Solving these normal equations (3.13a, b) simultaneoudly, we obtained
the expression for by, , (3.16).

Comparing the expressions for by, ,, , (3.9), and by, ,, (3.16), we
found they are the same. This shows that the auxiliary regression logic
and the least squared error logic lead to the same estimator for the
dependence of y on x; which is uncorrelated with .

We can emphasize this concept of estimating the " net effect” of x;
and y with afew more manipulations.

Consider the smple regression between y and X1

¥3.17p yi = bylxli t e,

Using the expression for the simple regression coefficient
[equation (2.11)], we get:
= YiXy My,

818 by, = o =

Similarly, from the auxiliary regression (3.2) we obtained:
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. = X1iX2i My
¥Y3.19p by = = 122
2 > X% M X1X1

We can rewrite equation (3.14a) as follows:

Myxl ? bY2.1MX1X2 = MyXl 2 Db MX1X2

¥3.19ap by, = :
Y p Y12 M X1X4 M X1X4 Y21 M XiX1

Substituting into (3.19a), using the moment expressions from
(3.18), and (3.19):

¥3.20p by1_2 = by1 ? b21bY2.1

Thus the multiple regression coefficient indicating the " net effect”
of x1 ony isequa tothe”gross effect” of x1 ony, as estimated by the
simple regression coefficient , minus the relation between x; and x», as
indicated by b1, times the " net effect” of x, ony, asindicated by by, , .
The "net effect” of x1 ony, by, ,, will differ from the " gross effect” of
X1 ony,by,, by agreater amount the larger is the interrelation of x; and
X2,b12, and the larger the " net effect” of x, ony, by,,. If X1 and x, are
not closely related or x;, has little effect on, the "net” and " gross’
effects of x, and y will differ little. Thisis an indication of the degree
to which the multiple regression is an "improvement” on the smple
regression in attempting to estimate the independent effects of x; and
y. The multiple regression ” controls for” the effects on y of x, which
might be " operating through x;” due to the inter-correlation of x, and
X2. The simple regression, by ”omitting” the variable X, in estimating
the relation of y and x1, may lead to abias in the estimate of that
relation. We will return later in amore general discussion of bias to
this expression for the extent of omitted variable bias.

V. Variance, Covariance, Coefficient of

Determination (R2) and Correlation (r)

(Review Beals E(x) p. 61, 86; az p. 52, 62, 63; a,, p. 88,89)
We began our discussion of regression andysis by focusing on the
problem of finding a”best estimator” E(y) for avariable Y, given that
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Y had afrequency distribution over arange of values. We showed that
the mean was the value for E(Y) which gave the least sum of errors. It
was shown it was the value for E(Y') which minimized the sum of
squared errors, = e? . This sum of squared errorsis a measure of the
dispersion of Y around its mean. If we divide the sum of squared
errors by n, we have ameasure called the variance of Y.

2
ay2= :>(YH?W>

When we proceed to the discussion of smple regression, we noted
we could "improve” our estimator of Y by developing the conditional
mean E(¥ P Xp. This ”improvement” should mean that the sum of
squared errorsis lesswhen we use E(Y P Xprather than E(Y).

V4.1p  =>QY; ? EYY P Xpa? < =>RY; ? EVYbj?

Graphically, we can illustrate the division of Y into three parts:

=a+bm

/

X % X
At X4, the observed Y, (PT) can be divided into the predicted
part, Yi, (TR) and the error, E; (RP).
, a
Y4.2b Yi=Y;+E

Subtract Y from both sides to put the expression in deviation form:
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V430 (Yi?Y) = (éi ?Y) +E
Y4.3ab yi=y+e (PS=RS+PR
Square both sides and sum:
V44p Sy =Sy +2>vyie + =€’
Y4.5p y = bx;
Therefore:
Y4.6b =vyie, = =bxe = b= xe
From the normal equations (2.10), we know = x;e; = 0, therefore:
VA6 =vyie = b =xe =0
Substituting (4.6a) into (4.4):
Y470 Sy =Syi+>¢?

Total sum of Squares = Regression sos + Error sos
YSSTb = YSSRp + YSSEP

Returning to equation 54.1), note that
BY; 2EYYP Xpa = (Vi ?2Vi) = e

. , a
{48 ==pY, ?EIY P Xpa? = =>(Y; ?V;)" = >e?
From (4.7), we
see>RY; 2 EYpa? = >(Y; 2 %) = >y? = >y? + >¢?
Therefore:
, a ,
=(Y; 2 EVY P Xpa® = =>(V, ?Yi)2 = >e2 < Y, 2EW’ = >y + >¢?
Thus we have shown that using the conditional mean from the

regression line as our estimator reduces the sum of squared errors.
Now, returning to (4.7), divide both sides by >vy?2 :
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From (4.7) and (4.9) we can see that we can partition the total sum
of squares of Y into aportion ” predicted” by the linear regression

2 2
—and aresidual, sum of errors squared -
i =>y?
The " predicted” portion is called the coefficient of determination
and is usually denoted by R2.

; =2 > e?
4100 RE= Z X =172 22
=Y =Y

Going back to (4.5) and squaring and summing, we get:
Y4110 >Sy?=p?>x?

Substituting (4.11) into (4.10):

b2 > x?

2
i

V4.12b R2=

Substituting for b from equation (2.11):

4120 RE = TTINP o =xE ¥yt
I=xppt =V = >y
Take the square root:
r=JRE = XY

V=X =y

We define the covariance of y and x as:

(Yi 7#’) (Xi 7?() _ = XiYi

Ayx =

Thus, we can rewrite (4.13):

= XiYi _ _ax _ _ covarfyxp
J> x? =>y? Ja§a§ JVarYybVarYxp

V4.13ab r=
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r is called the correlation coefficient.

We can see that both R? and r can take on values between 0 and 1.
Vaues closeto O indicate that there is little linear relationship between
Y and X, values closeto 1 indicatethat Y and X are closely related.

We often refer to R? as the ” portion of variance explained”,
meaning the portion of variancein Y ”explained by” the linear
regression of Y on X. R? is also referred to as a measure of the
” goodness of fit” of the regression ling; if R? is high, the regression fits
the data points well, as the errors around the regression line are small.

We can derive the expression for the coefficient of determination
for amultiple regression equation. Starting from equation (3.1), we
derive R7;, , with the subscripts to indicate the two independent
variables x1 and Xx.

We denote the predicted value from the multiple regression:

¥4.14b  y1a = by, Xy + by,,Xa
Multiply (4.14) by y; and sum over i:
V4150 =yapyi = = yui(yate,,) = =yt >ynme,,
Substitute for y 12in the second term:
= = y3, + =Yy, i + by, Xaibey
= =>Yy35 * by, = X1y, + by, = Xai€y,
Since [from (3.13a, b)] = xsiey,, = 0,>Xz€y,, =0
= =y

By analogy to the derivation of (4.7), we can write down without
derivation:
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Y4.16p >y =>y3, + =>¢e?

12

2 2
= Yo + =e

Y4.17p 1= 22
=yt =¥
2 2
Y¥4.18p R? = M =17 =€y
=y >y?

Using (4.15), we can write:

¥4.19p =% = =yuiyi = =>VYby,,Xq + by, XaiPy;
= by,, = Xayi + by,, = Xayi

Substituting (4.19) into the numerator of (4.18), we get:

bYl.z = Xii yi + bY2.1 = Xpi Yi

Y4200 RZ, = =V
|

While dealing with variances, we can develop the expression for
the variance of a sum of two variables (see Bedls, p. 86-89). Suppose
we areinterested in X + Y, then:

’ . — >VX+Yp, =X =Y,
4210 EX+Yp= (XFY) = 0t o A T gy

Treating X + Y asasingle variable, we can write down the
variancein X +Y:

, >[VX+Yb, ? (X+Y) ]
14220 a2,y = LY p'n( ) ]

Expanding the numerator and substituting from (4.21):
Y4.23p =>[{X+Yp, 2 (XFY)]* = =[IX+Yp, 2 (K+¥) > = =[(X 2 X) + (Vi
==>[(X?2K)*+2(Xi 2 K) (i 2¥) + (Vi ?¥)°
= > x2+2>= Xy + =y

We can then rewrite (4.22):
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, S>x2+2>XYy +>=y2 =X >y 2> XY
i4.24p a)2(+Y= i nlyl Yi — nl + nyl + nlyl

= ag +aj+2axy

V. Testsof Hypothesis. Significance of
Differencein Group

Means; Variancein b

(Review Bedls pp.179-99, pp.123-5, pp.235-43, pp.245-7,
pp.251-7)

So far we have been concerned with developing best estimates for
the expected value of Y, E(Y), or the best estimate of the conditional
expectation of Y, E(YP Xp, or E(YP Xi,X2,Xs,...p . We have been
ignoring the fact that we form these estimates on the basis of a sample
drawn from the population frequency distribution of Y or of the joint
frequency distribution of Y and X or Y and X 1,X2,... Now we wish to
take into account the difference between the estimate, based on the
sample, of say E(Y) and the true value of E(Y') in the population. In
testing hypotheses, we explicitly take account of the fact that various
samples will yield somewhat different estimates for the value of E(Y).

In this section, our basic objective is to derive the expression for
the variance of the simple regression coefficient, b, and to show how
that can be used to test hypotheses about the relationship between Y
and X. We will derive the expression for the variance of b by two
different routes: first [equations (5.1) to (5.23)] by developing the logic
of the test for significant difference between two group means and
showing how that relates to the variance of b; second [equations (7.6)
to (7.11)] by deriving the variance of b directly from the expression for
b givenin (3.6). Following these two routes is rather tedious, so it is
important continually to refer back to this statement about our basic
objective.

A. Tests of Significance of Differencein Group Means
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If it is assumed that the variable Y has a frequency distribution
which is described by a normal curve, then a good deal about the
distribution can be stated in terms of its mean,Y , and its standard
deviation, ay. Diagram 1 illustrates the normal distribution:

Diagram 1
Frequency

Distribution of Y

If the distance (Y1 ? ¥) = a, then the area under the normal
curve between Y 1 and ¥ is 34.13 percent of the total area under the
curve; i.e. 34.13 percent of the values of Y in the distribution will have
avauebetween Y1 and ¥ . If the distance (Y2 ? ¥) = 2a, thenthe
area under the curve between Y , and ¥ is 47.73 percent of the total
area under the curve. Thus, values of aon either side of ¥ cover 68.26
percent of al cases and values of 2aon either side of ¥cover 95.46
percent of valuesin the distribution. If avalue Y, which is greater than
2aY+or ?baway from ¥is observed, there is only a 4.5 percent chance
that it is part of the same underlying distribution.

In summary, if the distribution of Y is normal, we can say that
when the absolute value of Y2 is calculated, and is found to be
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greater than 2aV+or ?b away, then there is only a 4.54 percent chance
that the value Y is part of the distribution which has mean Yand
standard deviation a. (Stated obversdly, thereis a 95.46 percent chance
it is not from the same distribution). The interval ¥ + 1.96ais
commonly called the 95 percent confidence interval.

It is useful here to develop the expression for the variance of the
>y, . .
mean. Since ¥ = nY and each of the Y; in agiven sample are

independent and have the same variance, a3,

510 aZ = var(¥Y) =var[%YY1 +Yo+ .+ an}
_ 1 2 ,
= () variYo + Yo + .+ Yop

From (4.24), we have the expression for variance of a sum. Since
the Y; are independent, the covariances of the Y’ s are zero. Therefore:

, 2 1 2 , , . N
Y5.1ap ay = (ﬁ) fvarYyb + varYy,b + ... + varYynba
2
= (%) fag +aj +..+aja
2,
(%) ¥nadp

2
ay
n

Assume there are two groups. Members of group 1 have received
"no treatment” so are called ” controls’. Members of group 2 receive a
"treatment”, so they are called " experimentals”. Y is the response
measure.

Consider now for the relationship between the mean of the
response variable for the control, ¥ 1 , and the mean for the response
variable for the experimental group,Y . Take the difference between
these two means, (¥1 ? Y2 . These groups are two samples and the
question is whether they are drawn from the same population (which
has a frequency distribution of variable Y) or from different
populations (Y 1 and Y » with different frequency distributions for Y).
If they are drawn from the same response population, then the
"treatment” had no effect. We can think of drawing repeated
two-group samples (e.g., repeated experiments). Then the means
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calculated, ¥ 1 and Y 2, would differ somewhat in successive samples.
Thus, the sample means would themselves have a frequency
distribution, and the difference between the means (Y1 ? Y2 ), would
also have afrequency distribution. Assume that this distribution is
normal, with its mean,(@l ? %) , and its standard deviation,

a(#’l ? #’2) .

Diagram 2
Frequency

Distribution of Y

Now, for this distribution, statements can be made for certain
sample values, (Y1 ? ¥2) , of the difference between the two means.

If:

(f12¥,) 2 (7i2¥)
a(#’l 7#’2)

¥5.2p 32
then there is 2 95.46 percent chance that (Y1 ? ¥, is ot from the
distribution with mean (#’1 ? %) (or in other words, we would only

be wrong 4.54 percent of the time if we guessed it was not from the
distribution).
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If the two sample groups are really drawn from the same
underlying population distribution, then there should be no difference

intheir means:i.e.,Y, = ¥, ,and Y1 ? ¥ = 0. Therefore, the
appropriate test is to set (#’1 ? #’z)equal to zero and calculate the
absolute value,

y5.2ab

(Y1?2¥2), 20
a(#’l?#%) ‘

If it is greater than 2, then we say the difference in the means is
significant at the 95 percent levd, i.e. thereis only a4.54 percent
chance that a difference in sample means of this size, (Y1 ? ¥2)
could be observed if the true difference in means were zero. Another
way of stating thisis that if we had numerous successive two-group
samples (control and experimental) of the same size, only 4.54 percent
of these samples would have a difference in the means
(Yoontrol ? Yeerimena ) that was as great as, or grester than, the
value(#’l ? #’2) P

With the observed control group and experimental group, one is
ableto calculate Y1, and Y2, and the (Y1 ? Y2 ), for the above
expression. All that remains to be done, then, is to obtain a value for
the statistic given above asa(¥1 ? ).

Given that the two groups are drawn independently, ¥1, and ¥- are
independent random variables each with avariance, ag,and a3, . Then
¥. ? ¥,is the sum of two random variables and has a variance,
a%%?m . Again, using the expression for the variance of a sum of
random variables (4.24), and noting that the covariance of ¥4, and Y5 is
zero since they are independent, we get:

5.3 afy.4,) = aj, *aj,

Substituting from (5.1a) for the variance of the mean, we get:
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2 2
ayl + aYz
ny no

, a2 a2
Y5.3bb  ag,o4, = J (n_xil + n_);z )

Now we need to obtain from the sample data an estimate of a7, and
aj, and we'll indicate that estimate by a T(hat) over the expression.

>i(Y1i ?#’1)2 42 = >i(Y2i ?#’2)2
n?1 y2 n?1

Substituting in (5.3b), we get:

¥5.3ap  af ., =

Y5.4p &7 =

= (Yy?¥1) 2 = (Ya?%2) 2

'55 A — a§1 + é‘ygz — n;?1 + ny?1
Yo.5p 1792 = Ny ny | — Ny n,

which can be substituted into (5.2) to get the appropriate test
dtatistic.

B. Differencein Meansasa Dummy Variable
Regression

To compare two groups in asimple regression, first, form the
following dummy variable:

/5.6b D, = { 1 !f amember of group 1 }
0 if amember of group 2

Let n; = number in group 1
n, = number in group 2
N=n;+n,

Note that:

Y5.7|3 >Di=>1+>0=n1

N Ny n2
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Now, for the characteristic we wish to compare across groups, Y,
write the smple regression

Y5.8b Y, = a+bD; +¢

The normal equations for this simple regression are, by (1.2) and
(1.6):

Y5.9|3 >ei = >YYi ?a? bDil3 =0
N N
= >Yi?>a?b>Di =0
N N N

= Y, ?Vn;+nypa?bn, =0

ni+ny

Y¥5.10b >eD; = =YY, ?a?bD;jpbD; = 0
N N

Since all terms with D;

Odrop out of this product sum, leaving
only the n; terms where D;

1, we have:

Y5.10ab >eiDi: >YYi?a?bDib= >Yi?an1?bn1=0

N ny ny

Now, given both (5.9) and (5.10a) equal zero, we equate them:
¥5.11p = Y;?V¥ni+na?bn; = =Y, ?an;?bn; =0

ni+ny ng

Rearranging terms of (5.11) gives us:

Y5.12p = VY, ?2>=Y; = Yn;+nypa?an; ? bn; + bn; = Yn; + nyb

ni+ny ng

which gives:



Y5.12ab =Y = n,a
nz
= Y,
n2
N2

¥5.12bp a= =¥,

The constant term of the smple dummy variable regression equals
the mean of Y for group 2 (the group ”excluded” by the dummy
variable).

Now, substitute (5.12b) for ain equation (5.10a):

. =Y
Y5.13p > Y ? nl( rr;; ) ? bnl =0

Ny

Rearranging (5.13) gives us.

. =Y
Y5.13ab bn; = > Yi?n 2

N2
ni
Dividing both sides by nl gives:
’ = Y, = Y,
51300 b= —gt ( e ) =¥.?Y,

So the smple regression coefficient, b, in the smple dummy
variable regression is the difference in means for the two groups. The
intercept, a, is the mean for group two. We cal group two the
"excluded group” sinceit is the group for whichD; = 0.

Note that we use just one variable, D; , to define the two groups.
The simple regression, however, has two parameters, so we get from
the two parameters the mean for each group as follows:

¥5.D1b #’1 =a+b-= #’24' (#’17#’2>
Y5.D2|3 Wz =a-= Wz

Alternatively, we could formulate the dummy variable regression
to represent the two group means as follows:
Define:
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_ | lifgroupl _ | 1ifgroup 2
Dy =<—7—"— Dy =< ——mMm—
0 otherwise 0 otherwise

=Dy ny =Dy =n,

ny ny

Y5D.3pb Yi = biDy + boDy + €

The normal equations for this regression are:

Y5D.4p > eD;y = >yY?a-? biDy + byDyb =0 = > Y, ? bin;
ng ny ny
Y5D.5p > eDy = >yY?a-? biDy + byDyb =0 = > Y, ? bon,
ng ny ny
and, from that:
= Y, = Y,
b1 = Flll = Wl and b2 = P]ZZ L = Wz

If, however, we try to estimate:
V5D.6b Y, = a+biDj +byDy + e

It will not work, i.e., we get no determinate solution for & b1, or
b,. Thisis an example of linear dependence. The two dummy variables
representing only two groups yield two combinations: either D3 = O
and Dy = 1,0rDy = 1and Dy = 0. The sum of squared
errors,=>e?, = 0, since every observation comes from one of these
two locations, and thus the regression line fits perfectly.

Y ou must remember, therefore, that if the dummy variable
equation has an intercept term, then there must always be an ” excluded
group”, i.e., agroup only defined by taking on avaue 0 for the dummy
variable. (Recall that equations written in deviation notation subsume
anintercept term, e.g.yi = bD; + g, isequivalent to
yi=a+t bD; + ei).

We can estimate regressions using dummy variables with
trichotomous variables in one dimension. Suppose we define three
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groups in terms of a single characteristic. For example, define three
race groups : Black, Hispanic, and White (non-Hispanic, non-Black).
Define:

Dy = 1if black D, = 1if hispanic
¥~ 1 Ootherwise a - 0 otherwise

The size of the groups are: N=n; + n, + n3
We can define group means in terms of the following dummy

variable regression:
Y5D.7b Y, =a+biDy +byDy + €

Now we have defined White as the ” excluded group.” Form the
normal equations for this regression:

Y5D.8ab = e = >YY7 a? b1D1i + b2D2i|3 == Y ? blnl?bznz =0
N ns ny
Y5D.8b|3 = eD;y = >YY7 a? b1D1i + szziDDli == Yi?na? b1n1 =0
ni ni ni
Y5D.8C|3 = eDy = >YY7 a? b1D1i + szziDDzi == Yi ?n,a? b2n2 =0
ni ni ni

From (5D.8b) rearranged, we get:
Y5D.9b|3 biny = = Y ? ma

Ny
From (5D.8c) rearranged, we get:
Y5D.9CD bon, = = Y; ? npa

ny

Substitute (5D.9b), (5D.9c) into (5D.8a) to get:

Y5D.10ap =Y, ?Na? (> Y, ? nla) ? (> Y, ? nza) =0

N ny n2

Collecting terms:
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Y5D.10bb >VY,? =Y, -=>Y,? Na+nja+n,a= = Y, ?nza

N ny n2 n3

= Y;i?n3a

Substituting (5D.11) into (5D.8c) gives us:
¥5D.12p = Y;?n,¥3?bin; = 0

ny

Yi

=
Y5D.13p bi= —f—2?¥:=¥12¥;

Substituting (5D.14) into (5D.15) gives us:
¥5D.14p = Y; ?n,¥3?2byn, = 0

n2

Yi

=
Y5D.15p bo= ——?¥3=¥,2¥;

From the regression we can generate the mean for each group:

#’1 a+b1=#’3+(#’1?#’3)
#’2 a+b2=#’3+(#’2?#’3)
#’3 =a= #’3

Note again, we could aternatively define:

{ 1 if white }
Dy3=<{——m
0 otherwise

and estimate:
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¥5D.16b Y; = byDy; + byDy + b3Dg + €
Then you can show from normal equations:
bi=¥1 by=¥%, b= Y3
Y ou cannot estimate:
Yi = a+biDy +b2Dyi +bsD3 + €

for the same reason as above (linear dependence). Thus, as above,
if thereis an intercept in the dummy variable regression, there must be
an ”excluded group”, a group not represented by a separate dummy
variable.

C.Varianceof b and a\%,l?#,z.

In (5.3a), we developed the expression for the variance in the
difference of two group means:

. a’ a’
4 2 — Y1 Y2

Since, as we have just shown, in asimple dummy variable
regression, b=(¥; ? Y2), then:

Y 2 2 a)zl a)zlz
—_ j— 1
Y5.15p ap = Ay .y, = i + Ry

Let usassumethat ad, = af, = af,, thenrewrite (5.15) as

, a?
5.15ap af = a3( + b ) = ag M el = e

Now, consider the sum of squared deviations for the variable D, :
Y5.16b = (D; ?B)* = =D;p? ? 2B VDb + NBH?
N N N

>Di_

Substituting B = —

39



. > D;=> D; N/=>_D;p? Y=
Y5.16ap = (D;?BH)*==>D??2—N 'N N I\TZ' = >p27 __

N N N

All the n, terms where D; = 0 drop out of = YD;p? and for
Di=1,D?=

¥5.17p =D?=n;
N

~ D22 Y>|\|:|)ip2 _py o DB MN?0E
N

_ m¥ni+mep?nf _ ninp

N N

So using (5.18), we can rewrite (5.15a):

¥5.180 = (D; ? B) *

. a2 a2
¥Y5.19ab af = o = £
01,\7112 >(D| ? @) 2

We wrote down the test statistic for determining a difference in means
was significantly different from zero. Now using (5.13b), (5.15a), and
(5.19) to subgtitute into (5.2), we can rewrite (5.2):

, (Y12Y2) | _ o] _ bb|

ag

= (D;?1)?

so that we can test for the significance of a difference in means by
forming the test statistic given by (5.20). The expression |22 | |

ay,2%,

aZ distribution, but when (¥, ? ¥,) are from asample and ay,oy, IS
estimated &,y asin (5.5), the ratio |22 | is at distribution with

ay,2%,
N-1 degrees of freedom (see Bedls, chapter 8). Now if we estimate b
in (5.8) from asample, and a, from a sample, and substitute these into
(5.20) then:
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Y521|3 L = # = tno2
&y a3

= (D;?1)?

So atest equivaent to the test for whether the difference of the
group means is significantly different from zero would be to form the
ratio (5.21) and then see if it is greater than or equal to 1.96, whichis
the t value for the 5 percent level of significance, where N-2 is large.

Thus, we can see that the test for significance of b in the smple
dummy variable regression is equivalent to the test for significant
differencein the means of Y for two groups.

Making aleap by analogy, we can substitute any simple regression
independent variable X; for D; and write down the variance for by
directly from (5.19) as:

aZ __ai
>yX; ? Xp?  =>X?

¥5.22p ag, =

where a3 is the variance of the error term in the simple regression of y
and x. (We will return to this in amore formal fashion later). Likewise,
by analogy, the test statistic for by, significantly different from zero
would be:

Y523|3 b = b = tno2
Jai 2
=>x?

D. Variance of Multiple Regression
Coefficients

Recall that we derived the multiple regression coefficient by, ,
through the auxiliary regression of x,; and X5 and showed in equation
_ = yiewrs
(3.6) that by, , = ==
Since ey 5 is the independent random variable in a regression with
y as the dependent variable, we can simply substitute e; 5 for x; in
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(5.22) and write:

2

. ) ag
Y5.24b abylz = >—122|
: €12

Just as (3.6) can be generalized to the case of more than two
independent variables when the residual from the auxiliary regression
isredefined, i.e., €123, ni, SO (5.24) can similarly be generalized using
€123..nin place of ey

2

, ag, _
Y5.25p a2 = %
¥1.2,34,,ni >e ]
1.2,3/4,,,ni

E. F-Statistic, Analysis of Variance,
Hypothesis Tests on Several Parameters

(see Beals pp. 247-50, pp. 274-81)

First, we wish to show the equivaence of the F-tatistic test for
significance of the regression and the t-statistic test for significancein
the case of asmple regression. The F-statistic is:

. SRNK?21p _ N?K[ SSR/SST }_ N2 K .
15260 R = L KoL | Toaess | = L Ko R

where SSR - = y?; regression sum of squares (see 4.7)

SSE -= e?; error sum of squares

SST - = y?; tota sum of squares

K - number of regression coefficients (incl. constant)

N - sample size

The critical value for F is determined from the F-table entry for
(K-1) numerator degrees of freedom and (N-K) denominator degrees
of freedom, for the selected confidence level, e.g. 5 percent. If the
calculated F-value exceeds the critical F-value, the null hypothesis of
no significance is rejected, i.e. the regression explains a significant
proportion of the variancein'Y.

Noting that in the case of asmpleregressonK =2, so (K - 1) = 1,
and using (4.11) to substitute for SSR==>y?, we get:
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SR2?21p _ bPTx2 D272 pe

= = 5 =
SSE/YN ? 2b >e|2/N72 ag ag/>xi2

Y5.27p

Comparing (5.27) with (5.23) shows for the smple regression

SR2?21p _ B>~ x?

= = 2
SSENN? 2 a2 t

Y5.27ab

So in the case of asimple regression, the t test for the significance
of b and the F test for the significance of the regression are equivalent.
(The F test is a so sometimes referred to as the test for significance of
R?, as can be seen from the last expression in (5.26).)

The F test for the regression is sometimes referred to as analysis of
variance, since it derives from the partition of total variance, asin (4.7),
into aregression sum of squares and an error sum of squares. It is
usually presented in an analysis of variance table. (See Bedls, p.249, p.
275)

The F-dtatistic for amultiple regression is constructed from (5.26),
but the relationship of the F-statistic and the t-statistic is more
complicated. Suppose we are calculating the F-statistic for aregression
equation such as (3.1). Once again the SSR will be = y?2, but now
when we use (4.14) to substitute for y;, we get:

SRN3?21p _ =Y
SENN?3P = e2mem

>YbY1.2X1i + bY2.1X2i pwa.zXli + bY2.1X2i p/2

Y5.28b

L
_= bye X3 + =Dy X5 +2=>by,,Xq + by, Xz
242
Using (5.24), we note that:
. b2 b2
¥5.29ap  t2 = -HZ = y1.2
Pz é;‘%yl.z é‘g/ = e%.Zi

and:
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) b2 b2
¥5.20bp  t2 = 21 - y21

byo1 T g2 T a2 2
v é'byz_]_ é'e/ = e2.1i
or:
t2 aZ
Y 2 =42 2 _ ‘byl.2%e
Y530ap by1_2 - tby]__zabyl.Z - = e2
1.2i
t2 aZ
Y 2 — 32 2 — ‘hy2.1%e
Y530bp byz_l - tbyz_labyZ.l - = e2
2.1i

Substituting (5.30a) and (5.30b) into (5.28), then using an
expression =>e?,, and =¢€3 ;;

derived from squaring both sides of auxiliary equations like (3.4)
and the expression (4.13a) for the correlation coefficient ry, between
X1 and X2, with considerable manipulation (which | won’t go into
here: see Kmenta, p. 368), you get:

%Q/Y3 ?1b _ t%y1.2 + t%y1.2 + 2tby1.2tb>’2.1r12

v4-31p SEAN? 36 N12 15,0

which is the F-statistic for 2, N-2 degrees of freedom.

Therefore, while F for the regression and t for b are strictly related
in the simple regression case so significance of b by at-test necessarily
means significance of the regression by the F-test, in the multiple
regression case, one cannot infer from the t-tests on the coefficients to
the F-test for the regression as awhole. If r, iscloseto 1, F may be
large even though the tyy1 2, thy2 1 are small.

F. Testsfor Joint Significance of Multiple
Regression Coefficients

Sometimes we wish to test whether a set of coefficients as a group
is dgnificantly different from zero, i.e.

H:KY1.2 = KY2.1 =0 . .

whereKy, ,,Ky,, are the population values of which by, ,and by,,



are the sample estimates. Recall that, e.g. by, ,

can differ from Ky, , because of sampling variability (just as the
sample difference in means

(1 ? Y2 could differ from the true population difference in
means (Yl ? Y2>

in our difference in means examples alone).

Now look at the numerator of (5.28), we can see that if the
population value were Ky, , = Ky,, = 0, then the SSR would only
differ from zero because of the sampling variability in the by, ,and by, , .

. If that is true then both the numerator and denominator give
estimates of the sampling variability, and the F-test, which is basically
at-test of whether the numerator and denominator are from the same
distribution, gives us atest of the null hypothesis. If Ky,, = Ky,, = 0,
the F-value will fall below the critical F2, N-3 value. If the F-value is
above the critical value, the numerator and denominator are from
different distributions and SSR differs from zero by more than
sampling variability and therefore not dl the Kare zero.

We can extend the use of the F-gtatistic to test for the joint
significance of a subset of regression coefficients from amultiple
regression involving more than two independent variables.

Consider the population regression eguation:

¥5.32b Yi = KY1.23X1i + KY2.13X2i + KY3.12X3i + €y.123i
Suppose we are interested in testing the hypothesis:
Ho = KY2.13 = KY3.12 =0

Note that if the hypothesis is true, the appropriate population
regression is:

¥5.33p Vi = Ky, X1 + €y

Note that both equations would yield the same total sum of squares
(SST), but yield different regression sum of squares (SSR) and error
sum of squares (SSE). For (5.32), we get:
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¥5.34p Syl =Syi+ = 912/.123i
¥5.34ap SST = SRiz3 + SSEa23
For (5.33), we get:
15350 >y?=>y%+>¢€
¥5.35ab SST = SR+ S5,

If in fact the null hypothesisistrue, and Ky, , = Ky,,, =0

then in the population SSR. 123 would equal SSR.; and any
observed difference between them would be due to sampling
variability (causing by, ,and by, ,,to differ from zero). Thus, if we
estimate (5.32) and (5.33) from the sample and form the ratio:

SR 13 ? SR /N4 ? 2b

Y5.36b SE L /iN 2 b 3 FyarzpiNoap

If the null hypothesis is true, then the numerator and denominator
will both estimate sampling variability in the same population, and the
F-value of the ratio will fall below the critical value for F with those
degrees of freedom. If F exceeds the critical value, the SSR. 123
exceeds SSR. 1 by more than sampling variability, and the null
hypothesis is false. This means either Ky, 13 or Kyz 12 or both do not
equal zero (at the given confidence level).

We can also write (5.36) in terms of R?:

SR 123 ? SR1/N4? 2b _ SSR2s/SST ? SSR/SST
$5123/YN ? 4|3 $5123/$T
— R.2123 ? R21 N ? Q
~ 1?R32, Q?K

¥5.36ap

V1. Problemsin Non-Standard
Statistical Analyses

So far the discussion has been concerned with developing the logic
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of smple and multiple regression analysis and with tests of hypotheses
concerning the coefficients of the regression equation. In this
development, | have ignored the importance of certain assumptions
regarding the underlying probabilistic process which generates the
observations in the population from which the statistical samples are
drawn. | have also disregarded problems which arise when the
relationship between that population process, the regression equation
specified, and/or the sample data actualy available are not standard. In
the sections which follow, | will go over some of the problems of what
| cdl non-standard analysis, showing some examples of how they can
affect the estimates of regression coefficients or tests of hypothesis,
and, in some cases, how more complicated estimation procedures can
overcome these problems.

A. Multicollinearity (see Beals, pp.294-7)

The problem of multicollinearity can arise when in the sample
available for estimation, two or more of the independent variables have
ahigh covariance. Fortunately, the way we developed the multiple
regression coefficient viathe auxiliary regression [equations (3.1) to
(3.6)] makesiit quite easy to see how this problem can arise. We run
the auxiliary regression (3.2) in order to obtain the e; 5. If X1 and X
were perfectly collinear, the e; 5 would all be zero. In that case, (3.5)
would be meaningless and the regression coefficient in (3.6) would be
undefined since = €2, in the denominator would be zero. An exact
relationship between X, and X, rarely arises and the multicollinearity
problem most often takes the form of a high co-variance between x4
and X1, with the result ey »of the auxiliary regression small but
non-zero. We can see that as the e; 5 get quite small, the estimate of
bYl.z

may become rather unstable with both the numerator = y;e; 5 and
the denominator = e$ ,; getting close to zero, but their quotient,by, ,

being much affected by which gets closer to zero: if the numerator
gets closer,by, , is small; if the denominator gets closer, by, , may be
quite large. In these cases, small rounding errorsin calculations can
make estimates bounce around alot. The problem is further underlined
by examining the expression for agm , as developed in (5.24). The
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higher the covariance of x; and X, the smaller will be = €2 ,,with the
numerator of &7, &2

€12

, constant the smaller denominator, = 7, causes &3 | to get very
large. Thus, multicollinearity of x; and X, increases the variance of
bYl.z

and by, , considerably. This is another way of seeing the instability
of the estimated regression coefficients.

While the problem of multicollinearity in the sample does arise
fairly frequently in economic analysis, particularly in time-series
analysis where many variables move together in both trends and cycles,
it is common to misuse the concept of multicollinearity and to explain
away weak results as due to multicollinearity when in fact the problem
does not appear in the data. | have emphasized, by reference to (3.6)
and (5.24), that the problem can arise when the e; 5 done do not
congtitute sufficient evidence of the problem. Some anaysts jJump to
the conclusion that high covariance of x; and x, alone establishes the
existence of a multicollinearity problem. However, as long as the
correlation of x; and x; fdls short of 1, it is possible that there is
sufficient information in the sample as represented by the non-zero e i
to get significant estimate of by, ,. The ultimate test of multicollinearity
liesin the estimates of by,, and &y, ,. If the relations of y and x; is
sufficiently strong, it will show up in = yie; 2/ = €2,

, even though the e1 5 are small. For example, evenif the R%,

is .90, the .10 independent variance of X1; represented in the ey
may be adequate to estimate a significant relationship of y and x;.
Even though &y, ,will be large when e » are small, if there is astrong
covariance of y and e15,=> y;eq i, it will make by, ,

sufficiently large for the ratio by, ,/4p,, ,to passthe t-test.

In looking for multicollinearity problems, therefore, it is not
sufficient to examine the correlation among independent variables. The
best evidence is obtained by first running aregression with just x; as
an independent variable, and then a second regression with both x; and
X2. If X1 is significant in the first regression, i.e. by, /&y, passes the
t-test, but in the second regression &y, gets very large, &, isaso
very large and as aresult, both by, ,and by,, fail to pass the t-test, then
there is amulticollinearity problem, i.e. there is not enough information
in the sample about x; independent of X, and vice-versa, to estimate
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the independent effect on'y of x; and of x,, (In this comparison of the
two regressions, the R3,

will not be significantly greater than the R% by the F-test indicated
in (5.36a), evidence that adding X , adds no independent information
about factors affecting y). Note that what happens in this caseis that as
we add x; in the second regression, the estimate of the effect of x; and

. = yixi = yiewrs
y shiftsfrom by, = toby,, =
=>x ’ =eiy
H i 2 ‘4-121 2 a2 12
and itsvariance from &, = —-t0&f§,, = —=
=>x ’ =€ty

In the shift, the numerator of the coefficient falls more rapidly than
the denominator, and the denominator of the variance fals sharply. The
resultant t-ratio shifts from by, /apy, to by, ,/awy, , and fals sharply as
the numerator falls and/or the denominator rises sharply.

The multicollinearity problem then shows up in the large variances
of the regression coefficients in the estimated regressions. It cannot be
determined without actually running the regressions; again high
correlation among the independent variables does not alone evidence a
multicollinearity problem in the estimates.

B. Omitted Variable Bias (see Beals, pp.
288-92)

[At this point, students should review the properties of estimators,
i.e. unbiasedness, efficiency, asymptotic unbiasedness, consistency,
and asymptotic efficiency. (see Bedls, pp. 144-64.) | will not discuss
these here but assume familiarity with the concepts.]

One of the arguments for using multiple regression in trying to
estimate a relationship between a dependent variable y and an
independent variable x; is that there may be other variables affecting v,
say X1, which are in turn correlated with x 1. Thus, taking the smple
regression estimate of the relationship, by, may mislead us about the
effect of achangein x; holding x, constant. To put this in other terms,
the regression equation:

v6.1p y = by, X1 + €y
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may be a misspecification of the correct relationship:
¥6.2b y= By, ,X1i + Dy, X + €y.12

because we have omitted a variable x; which affectsy. If thisis the
case, by,

is abiased estimate of the true coefficient by, ,.

We have already derived an expression which indicates the extent
of omitted variable bias if we estimate (6.1) when (6.2) isthe
appropriate estimating equation. The bias indicated in equation (3.20a)
is repeated here:

Y63p byl = by1_2 + bleYZ.l

To the extent x, does have an independent effect onyy, i.e. if
by,, = 0, then by, will be subject to omitted variable bias.

The issue of omitted variable bias arises sometimes in critiques of
estimated relationships when it is argued that some theoretically
relevant variable has not been included in the estimated relationship. It
also arises in cases where it is hypothesized that some unobservable
variable operates on the dependent variable and, sinceit can't be
measured, has been omitted leading to a potential bias. Sometimes,
using relationship (6.3), one can make plausible guesses about the
direction and order of magnitude of omitted variable bias.

VII. Basic Assumptions about the
Population Model and Problems
Duetotheir Violation (see Beals,
pPp. 233, 265-7)

It is now necessary to be clearer about the basic assumptions
which are made about the probability model which generates the
observations in the population. Also we need to reemphasize the
distinctions between the population model and the regression model
estimated from the sample. We will then see how the desirable

50



properties of the least squares estimates depend on these basic
assumptions by showing how some violations of the basic assumptions
can cause least squares estimates to fail to have the desirable
properties.

L et us specify the population regression model as:

¥7.1p y = Ky, Xai + Ky, Xai + Wy

where Wy, 15 is the disturbance from the regression line for
observation i in the population. | use the K and W notation to
differentiate the population model and observations from the sample
regression equation parameters and error term.

Basic assumptions about the population probability model as
represented by (7.1) which we make are:

(7.2) Each W; is arandom variable with mean zero

>Wip=0 i=12.,n
(7.3) TheW;’s are independent of each other
covyW;, W;b = EYW;,W;p = 0 fori ® O
(7.4) All W;’ s have the same variance
varyWip = E\W2p = a§ fori = 1,2,..,n

This condition is referred to as homoskedasticity.
(7.5) TheX'sare

a) non-random, or

b) independent of the W;, and

=>(x?2%)°% . .
¢) such that ————isfinite and non-zero.
As aresult

COVYXk,i,WiD = EYXk,i,WiD =0 k=121=12,..,n

I will not discuss these assumptions in detail, but will proceed first
to illustrate their importance by using one of them to derive the
expression for

varyby;b in a simple regression and then, second, toillustrate
problems of non-standard analysis which arise when some of these
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assumptions are violated.

We have already derived the expression for varYbyib by another
meansin (5.22). Let us start, this time, however, with the basic
population model as:

From our sample, we derive the least squares estimate
by,, which, using (2.11) is:

, = X4;Vi
770 by =
= Xj
Substitute (7.6) for yi:
. = x1iVKyx + Wy1iP
{78 by = 4 Tym T Ty
= Xj
_ = x4iKy, + = xaiWyay Ko+ = XqiWy.ai
=X . =>x2

If we take the expected value of b, we see that b is an unbiased
estimator of
Ky,:

. . _ = XaiWyai | _ = Xii X
Y7.9p EYbylp = KY1 + E|:>—)(]2J:| = KY1 + E|: >X% :|E8Wy.lia

because, if assumption (7.5b) holds, x4; and Wy 1; are independent
random variables and the expected value of the product of independent
random variables is the product of their expected values, thus

= xqiWy.ai = xij .
E = E EBWy.314
=X =X

(see Bedls, p. 90),
and, by assumption (7.2) EYW;p = 0
For the variance of by,, we have:
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\/ g > X W .
Y7.10b varYbylb = Var|:Kyl + E[# :| :|
= Xj]

_ = X1iWy.1j
= var| ————
> X

since variance of arandom variable plus a constant is equal to the
variance of the random variable (see Bedls, p. 62).

2
Y . = X1iWy 1i = Wy 1
Y7.10apb  varYby,b = var[#} = E|: & ZY-ll :|
= Xj] = X§;

. = xGW 5, oE =i X1 Xii Wi W
Y= x2.p? Y= x2.p?

In the first term, by assumption (7.4), EYW?pb = af for dl i, it can
be factored out and the = x?;

cancels out with part of the denominator, leaving a\?vE[ >1 - J .
X3

In the second term, by assumption (7.3), the EYW;,W;p = 0
and by (7.5), EYXk;,Wib = 0, so the second term vanishes there:

¥7.10bb varYbyib=a\%,E|: 1 J

2
= Xii

When we estimate varYby, b from the sample, we substitute &2

e? . .
=——as an estimate of a§ and —X— from the sample as an estimate
n?2 >

2
X3

of

E[ 1 J Thus we obtain:

2
X3

2
Xy

. ) 42
7.110  vatfby,b = E|: € J
>

whichis equivalent to (5.22).
Therefore, by using the basic assumptions, we obtain the estimator
of the variance by,
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more directly than by the route used above. It should be clear that
violation of the basic assumptions could lead to a different expression
for

EYby,p and var(by,b. | will proceed to a brief examination of some
examples of such cases.

VIII. Violations of the Basic
Assumptions (see Beals, p. 348)

A. Autocorrelated Disturbances
Suppose that assumption (7.3) is violated, so that:
¥8.1p coVIW;, W;p = EYW;,W;p ® O

For example,
W might be generated by an autoregressive process such as,

Y82I3 W = _Wét’_)lé + Vté

where

viare independent random variables with mean zero and constant
variance aZ.

L et us examine the characteristics of the estimator by, for Ky, from
the population eguation:

¥8.3p Yr = byaxe + Wy

under these conditions.Similar to equation (7.8):

, =X = x;YKy. X; + W;b = xW
840 by = ot o ZXIEXMTIC o, TXC
> X > X > X
, , : = x;W; A
/8.5p Efby,b = Ky, + E|: =0 :|E8Wta



S0 by, is still an unbiased estimator of Ky, .
However, when we look at varby, , we find:

. = x;W = xW
varYbylb:var(Kyl+ ! t) = var— !

= x? = x?

2
> = x2W32 = XXppsWiW
E XeWi - gl - XEWs +2F T tXt2sWiWi2s
= x? Y= x2p2 Y= x2p2
= XXps s
afE| —L; |+2afE] =T
> x? Y= x2p?

since, given (8.2), cov (W, Wiz1P = _ag,

. Now, as contrasted with the similar equation (7.10a), the second
term in (8.6) doesn't disappear. Thus, the standard tests which use
(7.10b), or more likdly its estimate (7.11), are incorrect [they will in
general underestimate var Yoy, b.

The Durbin-Watson statistic is used to test for autocorrel ated
disturbances (see Bedls, p. 348). If the test indicates autocorrel ated
disturbances, an attempt can be made to correct for it. First, estimate:

Y8.6b

Y87I3 Yi = bylxlt + P¢
If the Durbin-Watson test indicates autocorrelation, estimate;
v8.8b Pt = Pm1 + v

Using this estimate of _, transform the data by multiplying t-1
values by
rho and subtracting from the t values, yielding:

Y89|3 Yi ? _Yir1 = blexli ? _X1t?1|3 + th ? _Pt?lp = blexli ? _X1t?1|3

If ! isagood estimate of _, then v; conforms with the basic
assumptions (7.2) to (7.4), and the usual test statis-tics may be applied
to

by, as estimated from (8.9).

B. Heter oskedasticity
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Suppose assumption (7.4) is violated. Then in expression (7.10a),

Y= x2;p?
= X%iwili

Y= x2;p?

= xaixiWiW
for var by,, the second term, 2E| ——L——

does vanish, but the first term E[

®a\?vE[ >1 Jsincea\?v differsfor each i, so:

Xt

¢ . x2a2.. x2,a2 2 .2
Y8.10p varYbyib = - Wy 4 : 292 4 o+ ,xlnay_n
Y= x§p2 Y= x2p? Y= xp?

Thus, using (7.11) would in some cases over-estimate (if a;
increases with x;), and other cases under-estimate the truevarby, given
by (9.1). [See Bedls, pp. 357-62 for tests and corrections for
heteroskedasticity].

[Note that between (5.15) and (5.15a) above, we assumed a7,
=ag, = af,i.e. homoskedasticity across groups. This allowed usto
make the transition from af; .., toag.

C. Generalized Least Squares. An Example

Here, we will smply present an example of aG.L.S. correction for
heteroskedasticity. From Kmenta p. 504, we have the G.L.S. estimate
for B:

¥12.14p B = VX1 2IXp?LyX1 1 ?LYp

We will simply grind through the case for forming this estimate
when there is one independent variable X, and there are only three
observations, and where the disturbances are hetero-skedastic.
Consider
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| | o i
¥8.11p Y = BX+P where EYP;,P;b = ajj = agtort=)
Ofori @ j
a0 0
1= 0 a30
0 0 a%

liand the values of 1 are known.
Then, referring to Kmenta, p. 610-11, form 171

y 21— 1 :
Y8.12p 1= Jet 1 adj. 1

For det 1, see Kmenta, p. 607 (B.15):
det I = a%a3a%; + 000+ 000 ? 0a3,0 ? 00a2, ? a3;,00
—n2 a2 A2
=anpaznas
Kmenta, p. 610 (B.25):
aj,ay aj
adj. 1 = aj, ay a%

2 2 2
Az aj az
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— — ?12

a3, 0
|11 = det 2 2 = a%2a§3
0 a3
— —_ ?14
a3 0
|22 = det 1 2 = a%la§3
0 aj
: — ?12
a3 0
|33 = det 1 2 = a%la%Z
0 a3
- — 218 — 5 ] ?14
00 0a
I12=det =0 I13=det 22 =0
0 a% 0 0 |
- _ 718 — — 215
00 a3 0
I21=det =0 I23=det n =0
0 a% 0 0 |
- _?14 — — 715
00 a3 0
I31=det =0 I32=det n =0
az, o0 0 0 |
a%,a3;, 0 0
adi.l1 =detf 0 a%a% O
0 0 a%a3
Thus, if we estimate:
a%a3; 0 O
Y ?1 — 1 il = 1 2 A2
¥8.13p 1 Tl adj 1 a%asal, 0 af;a5 O
0 0 aja%
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B a$,a3; ]
a%a%a%, 0
- a$ a3
- 0 a%a%a%, 0
a% a3
0 0 a%a%a%,
B 1
o 0O O
- 1
B 0 a%, 0
1
0 a%
1
o 0O O
78.14b XN = XiXoXad| O 0 _ [ﬁx_zzﬁ}
2 ap az asp
0 vV
azs
X -
f8.15p  KIX = [X—;X_;&} X, [= XX X o= 2
ay aj ajz X ap az» asg =1 &ii
3
Y1
8160 X1y = [le 22 X } Y,
ap Az Az
Y3
3
= XaY1 | XoYp | X3Y3 _ — XiYi
ah a3 a% , af
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3 XY
, _ i=1 aﬁ

i=1 aﬁ

Thus if we estimate:

v Y1 _ . X er _ .. X1
Y8.18p a—ﬁ— a—ili"'a—ili—ba—“"'vi
= XY
, i=1 2
¥8.19p b= —j‘(z =B
i=1 aZ

The OLS of a;; weighed observation isthe G.L.S. estimate.
Note the EYv2p = 1 = a2, so the transformed errors satisfy the
assumption of the classical model,

a0 o 1 0O
¥8.20p  EVvivip = 0 a?o0 =] 01 O
0 0 a? 0O 0 1

From this example, we see that G.L.S. transforms the error terms
so that they satisfy the classical assumptions, and then the resulting
estimators have the classical properties.

Alternately, we can examine the sum of squared errors for the -
weighted regression:
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(3-11> (3?222) (ae_gs)zz[(an) (3?222) (3-33

¥8.21p >( )

[el €2 es] 0 Lz

= él e

So when we find b by OL S for this regression, we are really
minimizing the sum of the squares of the errors weighted by the
inverse of the variance-covariance matrix, sometimes referred to as the
generalized sum of squares.

We can see that if the original error,e, conformed to the classical
assumptions EYe?p = a2, EYeigb = 0 weighting the errors by the
inverse variance-covariance matrix would smply normalize al the
squared errorsto 1. Using the same weight for each e; and minimizing
the weighted and unweighted sum of squares would give us the same
answer. Whenevere does not meet classical assumptions, minimizing
the squared error unweighted does not give us minimum variance
estimators of the B’s. The weighting in the generalized sum of squares
shifts weight towards these observations with least error. So whenever
the variance-covariance matrix of e doesn’t conform to the classical
assumptions (and we know or estimate it), we can reduce the variance
of the B’ s by incorporating that information in our estimating
procedure. This is the rationale for seemingly unrelated regression and
full information methods.

Recall that in this example, we have assumed Omega s
known. In practice, we usually have to estimate it. In order to estimate
the elements of

Omega, we must impose assumed restrictions on it, since the
number of unrestricted elementsin an nxnll would be ”—;Ysi nce

covariances are symmetric).
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| X. Distributed Lags

¥9.1p Yi = I+ KoXi + K1 Xeo1 + ... + KnXiom + Pt

Problems in estimating (9.1) : @) observations lost due to lags
(need m periods of data for first observation onjoint y,x)

b) too many parameters to estimate with preci-sion.

Koyck Lag

If willing to specify a geometric structure of lag coefficients:

V9.2 Y: = J + Ko¥X; + VXog + VX5 + ...PVP
02v=21

For Koyck transformation, lag (9.2) by one period and multiply by
lambda:

Y93|3 VYir1 = VI + VKoXio1 + VZKoxt?z + V2X2 + ...+ VP
and subtract (9.3) from (9.2):
¥9.4b Yy = 3?2 VI + KoXi + VXio1 2 VKK o Xioko1 + Py 2 VP io1b

If kisvery large, the term
V1K o Xtak01 Will be small, so we rewrite (9.4) as:

Y¥9.4ap Y: = Jo ? KoX; + VXio1 ? Ry
where Jg = JY17VD Ko = Ko Rt =P¢?VPq

Row we Reed oRly estimate three parameters rather thaR m+...
However, we Rote that the disturbaRce term is:

YO5p R;{ = P;? VP

Y96|3 EYRt, Rt?lp = EBYPt ? VPt?lbYPt?l ? VPt?zba
= ERP{Pir>1 ? PtVPioo ? thzr_;l + VP>1VP224
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If the original 0; satisfied the basic assumption of EYP;,Pi1b = 0,
then the disturbance of the Koyck transform equation (9.4a),

Rt, will not satisfy the basic assumption of non-auto-regression.
The estimates are therefore inefficient. (SeeR & M, p. 168).

Further,

¥9.7b  EYRy,Ye1P = EYP; 2 VP21 PRI + Ko¥Xio1 + VX + .4
= ?Va$,, ® 0

so that (9.4a) also violated the basic assumption of inde-pendence
of the regressors and the disturbances , so that the estimated coefficient

V will be biased and inconsistent. (See Kmenta, p. 479).

The Koyck lag structure does reduce the number of observa-tions
lost and the number of parameters to be estimated, but in doing so, it
introduces two violations of the basic assumptions, i.e. auto-regressive
disturbances and independent variables correlated with the
disturbances. We could take standard fix-ups for these problems by,
first, using instrumental variables to deal with the problem
EYR:, Yio1P ® O (as described in Kmenta, p. 479-80), but that does not
deal with the auto-regression of the disturbances. Here again a
standard fix-up for auto-regression disturbances could be taken. (Note,
asR & M point out, the usual Durbin-Watson statistic is inappropriate
to test for auto-regressive disturbances where a lagged dependent
variable is aregressor. See p. 123 for the corrected Durbin-Watson
statistic for this case. Alsorecal R & M’s cautions about the
usefulness of the standard fix-up since

p hat may be subject to serious sampling variability (seeR & M,
pp. 72-77) ).

All this may be somewhat beside the point, however, since the
Koyck transformation will probably be an inferior choice for
distributed lag estimation in most cases. The most commonly favored
aternative is the Almon lag. The Koyck transformation is superior to
the Almon lag, as far as| cantell, in only one particular: it uses up
fewer observations (degrees of freedom). It is inferior to the Almon lag
in several ways: it imposes more severe restrictions on the form of the
lag structure (declining geometric); it yieldsinconsistent estimates,
unless corrected by instrumental variables or maxiwm likelihood
reformulations; it yields inefficient estimates unless corrected by
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generalized least squares.

Almon Lag

The Almon lag fits alag structure of a given order of polynomial,
but does not restrict the form within that given order. For the Almon
lag, we reformulate (9.1) as:

¥9.80 Yy = J+KoYgoXi + 91 X1 + ... + OmXeomP + Py

The g; are determined by the degree of the polynomial, the degree
being equal to the number of turning points we expect in the lag
structure, plus one, e.g., a cubic polynomial.

Y99|3 gi = Vo + Vil + V2i2 + V3i3

gives alag structure with two turning points:

s,

Substituting (9.9) into (9.8), we obtain:
¥9.10p Yy = Jo + KoBVoXi + YWo + Vi + Vo + VabXing + YWo + 2V1 + 22V, + 23V3bXion + ..

which can be rewritten:



Y¥9.10ap Yi = Jo + KogVoZig + KoV1Zi + ... + KogV3Ziz + Py
where Zyy = Xi + Xo1 + ... + Xiom
Zy = X1 + 2Xio2 + ... + 2Xiom
Ziz = X1 + 23Xz + ... + MPXiom

In the case where there are m >number of V, the Almon lag saves
degrees of freedom. If we impose restrictions on the end points, i.e.

wi = 0w, = 0, we reduce the number of parame-ters further.
Picking the length of the lag can be done empiri-cally (see Kmenta, p.
494). Note that the transformation does not introduce correlation
between independent variables and the disturbance nor auto-regression
of the disturbances. Further, since thereis no lagged dependent
variablein (9.10a), the usua Durbin-Watson test can be used and
corrections made if necessary.

X. Estimation of Equationsin
Simultaneous Systems

A. Two examples of Simultaneous
Equationsbiasof OL S

(Kmenta p.302, 533; Bedls p. 373-374; Kelgian & Oates
p.225-226; Rao & Miller p. 187-188; Frank p.307-310)
1. Consumption Function

¥10.1p  C, = bo + b1Y; + Uy
C: = consumption
Y: = income
I = exogenousinvestment

Y102I3 Y: = Ci+ 1y assume EY't,UtD =0
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Substitute (10.1) into (10.2):
¥10.3p Y;
v10.4b Y;

bo + b1Yi+U; + ¢

bo U, I,
12b,  12b;  12Db;

Multiply by U and take expected values:

boUi | 1U, | Uf )
17b1 1?by 17b1

Efl, Ui + g2 p-ETUPD

¥10.5p cowYY;:, Uib EYYt,Utb=E(

bo
1?b; 1’?b1

1
T9p EUE 00

EYUtD + —

So estimates of
b1 and b, will be biased and inconsistent.

2. Supply and Demand Functions
¥10.6b g = a3 + bip+ci1Y+ U; demand function, Y exogenous
¥10.7b Qg
¥10.8> qq

a, + b,p+ U, supply function
gs market equation

Substituting (10.6) and (10.7) into (10.8):

¥10.9p ar+bip+ciY+Uy = ap +bop+ U,
Solving for p:
¥10.10p a8y Gy, U1?Up

P=1,2b; 1,20 ' @ Db,2Db;
¥10.10ap p=f+gy+eyy

multiply by W
and taking expectation:
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. . ) ) -
¥Y10.11p  cowyp,uib = EYp,uib = E|:( ai-a )u1+ C1 Yuy + U, ?2U;p u1:|

b, ? by b, ? by b, 2 b;
= ai ?az -y Cq1 ¢ 1 2k o EV .
b, ? by EYusp + b, ? by EYY,uib + —b2 2b; BEYU:LD ! EYULUZD&
— 1
by 2 by o™

(since EYu1b = EYY,u1b = EYug,uzb = O by assumption).

So, estimates of az, b1, ¢, will be biased and inconsistent. Similarly
covYp, u2b ® 0 and estimates of a, b, will be biased and inconsistent.

The nature of the bias can be seen by applying OL S to (10.10) and
using (10.10a) as the auxiliary regression to estimate, for example,

bi .

= €pyd

710126 by = .
= €y

Substituting from (10.6) for qq:

l!)l _ = ep_yYal + b1p +ciY+Uqb

¥10.12ab >
= €y

=€y . TGP ey = epu
2 1 2 1 2 2
= €py = €py = €py = €py

a;

Since > e, = 0[from normal equations for OL S estimate of
(10.10)] and >e,y.P = €3, and =>Y.e,y = 0
by derivation of epy.

, > e, U
¥10.13p0 by = by + — Y1

€py

Transforming (10.10) , we obtain the residuals from the auxiliary

regression:
— ,,al?azf, C1 =U1?U2
Sy P bz?bl ) bz?blY bz?bl
Therefore:
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Ui ?2U, U ?2U, _ =Uuf?2>uiup +=>U3

¥10.140 ey = =

b,?by by?b; Yb, ? by b2
and:
) U?U >u??2>uU;
Y10.15b >e, U = > —1 2u; = -
py=L bz ? bl ! Yb2 ? b1|32

So substituting (10.14) and (10.15) into (10.13):
=>ui2 > uup

¥10.16b b=nb+ Vb,?b1p
= u3?2 = ugup+ = u3

Ybo?b1b?

Assuming, as above,covfU1,U,b = 0 and taking expectations:

. . a2
710170 E(b1) = by + Vb ? bip——
aUl + uz

We can see the simultaneous equations bias of b, for OLS depends
on the variance of u; relative to the variance of u, aswell asthe
magnitude of by and b,. Since this does not diminish with sample size
increase, it is also asymptoticaly biased and inconsistent. (See R&M
p.189-192 for further development of this). Similar demonstration can

show E(Bl) = by +Yby ? byb aalz . The correlation of P and u; can

ag +ag,
be described verbally (drawn from Beals, p.373). Looking at (10.6),
suppose u;islarge. The gqq must be large (if Pand Y are not correlated
with u;) but since qq = gs, by (10.8), qs must also be large. Unless u,
is correlated with u,, which we assume is not the case and we assume
cov (ug,uzp = 0, gs canonly belargeif Pislarge. Therefore P and u;
are necessarily correlated.

B. Consistent Estimators of Structural
Equations

Since the OL S estimates of structural equations such as (10.6) and
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(20.7) will be biased and inconsistent due to the covariance of the
endogenous variables and the error terms, we naturally look for the
estimating techniques which remove this source of bias or, at least,
yield consistent estimators.

1. Indirect Least Squares (Instrumental Vari-ables)

(Kmenta p.551-55, Rao and Miller p. 201-212, Bedls p.376-378,
Frank p. 312-315)

Since the endogenous variables on the right hand side is giving us
problems, it occurs that one way out of the problem might be to solve
the system of equations for the endogenous variables as dependent
variables determined solely by exogenous variables (recalling from the
algebra of simultaneous equations systems that this can be done). We
have already done thisin (10.10) and we note that it contains
differences and ratios of al the structural coefficients of interest. We
note that (10.10) contains only exogenous variables on the right hand
side and so can be estimated by OL S without concern about
simultaneous equation bias. If we now solve (10.6), (10.7) for q,
(0=q4=0s) in reduced form, we get:

v _ albz ? azbl C1b2 U1b2 ? U2b1
NO18 = S h, T Dy 2bi VT by 7bs

Rewriting (10.10), the reduced form for p:
¥10.19p  p=E3z+E4+ vy

where:
— aiby ? asby — _Cibo
Bi= 0,70, 27 D,%0
— ai ? ao — C1
B3 = 0,70, Be= 5070

We can now try to work backward for estimates of some of the
structural parameters we find, from the OL S estimates of (10.18) and
(10.19):
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; Ez _ _Ciby C1

10200 b, = E B I
A ) _ albz ? azbl ) szal ?axp — b2 ? b1
8, = €12 byt b2?7b1 © b,7b1 2, 7b;

So by estimating the reduced forms for g and p by OLS we can
obtain estimates of the structural parameters. These structural
estimates are consistent (see Rao & Miller p.203-207), but they are not
unbiased because:

EVbab = E(%) ® E(E,)/E(Es)
4

(See Bedls footnote 3 p.377). See Rao and Miller p.201-212 for
discussion of comparative bias of direct and indirect least squares.

2. Two Stage L east Squares

(Kmenta p. 559-564: Rao and Miller p. 212-215; Kalgjian and
Oates p.228,239; Frank p.326-328)

A second method of obtaining consistent estimators of structural
coefficients is to utilize two-stage least squares. Once again the
reduced form is utilized. The reduced form for the endogenous
variable, in our exampley, on the right hand side and may be estimated
by OLS, i.e, we estimate (10.10) or (10.19).

Then:

¥10.21p  p=Esz+ E4Y

provides a variable which is correlated with p, but is uncorrel ated
with u; or u,, since we have subtracted off from (10.19)

Vo = (552 ). We can then use p as an instrumental variablein
(210.7) to estimate b,. Substitute (10.19) into (10.7):

Y10.22|3 g=ax+ bzp +Ux = ax + sz[b +Vob+U = Ay t+ bzlb + szVzD + U2
¥10.22ap g=ax+ bzlb + Uy

Examining G,we find

¥10.23pb EY Usb = EszVz + Uusb = szYVzD + eYUzD =0
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and the independence of p and u, is established by:

¥10.24p EVYp,Uzb = EYE3 + E4Ybl, = EYE30, + E4YUzb
= E3EY|:12|3 + E4EYY|:12|3
= E3EYI:12|3 + E4EBWb2V2 + U,ba
= E3EYI:12|3 + E4b2EYYV2|3 + E4EYYU2|3
= 0 since EYl:lzp =0 by 10.20. EYYVzp =0, EYYUzD =0
Therefore we can estimate (10.22a) without fear of simultaneity
bias, yielding a consistent estimator of by. It is only consistent because
b is an estimated instrument and sampling variability may cause it
to be biased in small samples.
3. Limited Information Maximum Likelihood

(Kmenta p.567-573, Maddala p.232-233)
Estimates by maxinum likelihood formed by writing (10.7):

¥10.25p Qs ? bop = az + bop+ U or fs = az +uy

In writing (10.7) we have imposed the restriction that gs is
unrelated to Y and rewrite (10.7) as:

¥10.26b gs=ax+ bzp +CcoY+ Uy
and transform to:
¥10.27p Qs ?bop = az + CoY+ Uz of §=ay + coY + Uy
then SSE} = =>u3 SSEE = =>V0,b?

The likelihood ratio can be shown to be equivalent to:

. SSE =>Yq ? bop ? axb?

{1028  L=—l = 1q702p 7 8

SSEG, >(q?%2p?az?c2Y)

which, given the c,=0 in the population, can never be smaller than
b, are chosen to minimize (10.28).
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C. Theldentification Problem

1. Breakdown of theindirect

a. Indirect Least Squares

(Bedls p.382, 383;Maddala p.220-223)

i. Note above that we used indirect |east-squares obtain estimates
of

b, and a, but looking back at (10.18) and (10.19), we can find no
way to combine the

7. "4 toobtain estimates of a; and b,

ii. If however we add a variable to (10.7) so we now have:

¥10.29b Qo = a1 + b1p +Cc1Y+ U
¥10.30b gs=ax+ bzp + CoR+ Uy

We get the reduced forms:
¥10.31p q= Ei1+E,Y+E3R+ vy

p=Es+EsY+EgR+V2
where £, = ZpTR £, = pRR
R R
Es= ,9p, FEe- bz?’.(?:zbl

Now:
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, _ ?c,obs ?Co
11033 b, = EolEs = 2/ ok

_ c1by C1
bo = Eolls = -]

Cy = Ee(l!)z?l!)l) = ? ’)CZ (l!Jz l!:)l)
CL = E (l!Jz 1131) bzf)bl (52 l!31)
é.l = El?ﬂ')lézl
é.z = Ez?ﬂ')lézl

iii. Suppose instead of adding an exogenous vari-able, R, to gs,
(10.7), we add it to qgq, (10.6):

¥10.34b gs=a1 + b1p +c1Y+diR+u;
¥10.35b qs = ap + bop
The reduced forms are:

¥10.36P q=E;+E,Y+E3R
p= Es+ EsY+ EgR

where:
— aiby ? asby — _Cibo
where E1 = = op, - E27 5,96,
_ ?ajb, _ a?a
Bs= 5,200 4T b7
- _C - _a
Bs= 5,20, F¢7 B,2D0;

Now for b, we get two estimates:
Y10.37|3 l!)z = Ez/és s l!)z = E3/E6

These two estimates need not be equal and for each of these
estimates we get an estimate of

asinced = M ? b2, Alsowe are unable to obtain estimates for

ay b1,c1, or d;. When the indirect least squares fails to give us
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estimates of the structural equation, as for the demand equation

(a1,b1, 1) in (10.6) and (10.34) above we say the equation is under
identified. When it gives us unique estimates for a structural
parameter, as for the supply equation in (10.6) and (10.34) above we
say the equation is exactly identified. When it gives us multiple
estimates for the structural parameters, as for the supply equation in
(10.35), we say the equation is over identified.

2. Breakdown of Two-stage L east Squares

Suppose we tried to use two stage | east-squares to estimate (10.6).
We would estimate:

¥10.38pb Qo = a1 + bl([b + V1> +Cc1Y+ U
¥10.38ap Qg = ay + by ¥pp +c1 Y+ Oy

However, recall that from (10.21):
[b = Ez+ ELY

Sothat p and Y are perfectly collinear, and if we try to estimate
(10.38a) by OLS we will runinto perfect multicollinearity.

Thus when the structural equation is under-identified, two stage
least squares breaks down.

3. Linear Independence and I dentification

Another way of looking at the identification problem is in terms of
the linear independence of the equations. In the case of (10.6) and
(20.7) for example, we can ask whether each equation is
distinguishable from alinear combination of the two equations.
Form aweighted average of the two eguations:
¥10.39p g = wfay + bip+ciY+ush + Y12 wh¥ay + bop + uzb
=a7+b7p+c7Y+u7
wherea 7= way + Y12 wha,, b 7= why + Y1 ? whb,,c 7= wey,u 7= wuy + V1 2 whu,

Estimating equation (10.39) would be indistinguishable from
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estimating equation (10.6), the demand equation. Thusif we did
estimate it we would not know whether we had gotten estimates of the
demand function or aweighted sum of the demand and supply
functions.

(Note Rao & Miller p.191 distinguish this identification problem
from the indirect least squares bias issue).Thisisillustrated in the
familiar diagram used to illustrate the identification problem.

If we estimate from the observed

04 = Qs points (the o points), we may obtain aline such as the
dashed line which is neither the supply nor the demand equation.

However (10.39) does not look like (10.7) unlessw = 0. Thuswe
cannot generate an equation which looks like the supply equation from
aweighted average of the supply and demand equa-tions. Thus when
we estimate (10.7) we know that we have estimates of the supply
function only. The supply function isidentified. Thisis usualy
illustrated as follows:
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qd'=a| + h:p -I-bTI

c|l;f= a¥ blp-l- Iirl:l

Since the demand curve shifts with the differencesin Y and the
supply curve does not, we can observe points aong the supply curve
unambiguoudly separated from the demand curve.

Note that in discussing these problems of identification we have
not discussed smultaneity bias. Thus if we estimated (10.6) by OLS
we would have two problems: first, as just dis-cussed we would not
know whether we had estimated a structural demand equation or a
weighted average of the structural demand and supply equations, i.e.
the equation is under-identified; second, the OL'S estimates would be
subject to simultaneity bias since

covYp,usb ® O. If wetry to deal with the second problem,
simultaneity bias, without recognizing the first problem, our estimation
methods (indirect least squares or two-stage least squares) break down
aswe've shownin C.1 and C.2 above.

If we estimate (10.7) by OLS, we know we have identified a
supply equation, but our estimates are subject to smultaneity bias
since

covYp, u2b ® 0. We can use indirect least squares or two-stage
least squares in this case to get consistent estimates without having the
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methods break down.

It is important to see that the ssmultaneity bias problem and the
identification problem are distinct. We can have simultaneity bias
problems even when we don’t have identification problems.

D. Rulesfor Identification

(Kmenta p.539-550; Kelgjian and Oates pp. 244-253; Frank
p.315-323; Maddala pp. 223-225, 234)

1. The Order Condition (Counting Rule)

Let usline up the aternative demand and supply equations used
above and indicate their identification status:

¥10.6b g = a; + bip+ Cc1Y + Uy underidentified

¥10.7b qs = az + byp exactly identified
¥10.29p gg = a1 + bip+c1Y+ Uy exactly identified

¥10.30p gs = @y + bop + C2Y + Uy exactly identified
¥10.34b ¢ = a1 + bip + c1Y + diR + uy under identified
¥10.35p Qs = ap +bop+u; over identified

We can see that gsis exactly identified when there is exactly one
exogenous variable excluded from gs but included in gq4. In (10.7) and
(10.30), only Y is excluded from gs and included in qq. Likewiseqq is
exactly identified for (10.29), where R is excluded from qq but
included in gs.

Over-identification occurs for s in equation (10.35) where both Y
and R are excluded from gs but included in qq (10.34). [Note that
when this occurred indirect least squares gave us two estimates of a,
and b,. One was associated with the reduced form coefficients of Y,

", and ~s, and the other with the reduced form coefficients of R,
"4 and 6. Thus we have more exclusions than we need to identify the
supply equation.]

Under-identification occurs for gqq in (10.6) and (10.34) because
there are no exogenous variables excluded from qq which are included
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inQs.

The genera counting, or order condition rule, is that to identify
(that is exact or over identification) a given structur-al equation the
number of exogenous variables excluded from the given equation must
be at least as large as (that is as many or more than) the number of
endogenous variables included in the structural equation, |ess one.
[Note: thisis for an equation written inirregular form. Theruleis
sometimes discussed in terms of r.h.s. variables when written in
explicit form. Then the number of r.h.s. endogenous variables are
counted.

2. The Rank Condition

The order condition is necessary but not sufficient. Consider a case
where we have a system of 3 simultaneous equations involving three
endogenous variables y; Yy, ys and three exogenous variables z; 7, 73 .
Represent this system by the following table (Maddala p.223):

Yi Y2 Y3 21 Zr Z3
¥10.40p equationl x O x x 0 X
¥10.41p equation2 x 0 O x 0 X
¥10.42b equation3 o x X X X O

The rule for identification is: delete the particular row of the
equation in question. Then pick up the columns corresponding to the
elements that are zero in the deleted row. If we can form a matrix of
rank (G-1), where G is the number endogenous vari-ables, from these
columns, then the equation is identified (i.e. neither exact or
over-identified). In the example (10.40)-(10.42), G=3, G-1=2. Now
consider equation 1 (10.40). There are two included endogenous
variables, Y 1, Y 3, and one excluded exogenous variable, Z,, so the
order condition (counting rule) indicates it is exactly identified.
However, delete row 1 and from the matrix of the elements from row 2
and 3 corresponding to the zerosinrow 1, i.e. the columns Y, and Z».
We get
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Y, Z»
eg2 0 O

eg3 X X
ThisisaG-1 matrix but itsrank is only 1 since det

XX

of equa-tions 2 and 3. Thus even though the order condition indi-cates
exact identification, the rank condition indicates under-identi-fi-cation.
For the second, delete row 2 and form the matrix from the e ementsin
row 1 and 3, equivaent to the zero columns of row 2:

|: 00 = 0.This means that equation 1 is not linearly independent

Y, Y3 Z3
egl 0 x O
eg3 X X X

The rank of the matrix is 2 (= G-1) since we can form at |east one
2x2 submatrix whose

det®0 . So the equation is identified by both order and rank criteria.

For the third equation, the matrix is:

Y1 Z3
egl x X
eg2 x X

3. Identification through Other Restrictionson the
System

Thus far we have discussed identification primarily in terms of
exclusions of variables from equations in the system. Howev-er, it is
important to be aware that identification can also be achieved by other
restrictions on the system of equations. Other restrictions can take the
form of restrictions on sum’s of coefficients (see Maddala p. 225) or
on the variance-covariance matrix of disturbances (see Kmenta p.547,
Maddala p. 226). Non-linearities in equations and non-linear
restrictions on coeffi-cients can al so result in identification in case
where the order condition appears not to be satisfied (see Maddala

79



p.228).
XI. Miscellany

A. Partitioning R?
We use (3.20) to substitute for by, , in (4.19) and get:
¥11.1p  =vy3, = Yby; ? bisby,,p = Xqyi + by,, = Xayi
= byi = xgy; + +by2_1(> XaYi ? by = xliyi)
From working from (4.11) we get:

= X1iYi

YllZD > y21 = b2y1 > X% = by_l >X%

= xj; = by, =X

which we can substitute into (11.1) to get:
Y11.3D = y_212 == y21 + by21(> XaiYi ? b12 = Xliyi)

We now substitute (11.3) into (4.20):

. =2 >Vv2 by V=XV ? Dio = XqiVib
v11.4p R32/.12 — Y.122 - Y_21 + Y21 2iYi . 12 1VYi
=Yi =i = y3

by21Y=>XaYi ? b2 = X3iyiP

= R2, +
y.1 >y2|

Now, however, if we had begun by substituting in (4.19) for
by- 1, we would have come out with:

by12Y=>X1iyi ? b2 = XzYiP
>y3

¥11.5p Ry = R%, +

If looking at (11.4) we attribute the first term on the right hand side
to X 1 and the second to X, we get a different portioning of R ;,than

80



if we use (11.5) and attribute the first term on the right hand side to

by21( = xayi?b12 = Xaiyi
X 2and the second to RY, ® vaa(> xa i > i)
>y
in genera It will only be trueif by, = 0. So we cannot uniquely portion
R .1, and attribute a portion to each variable.

X 1. Thisis because

B. Several Alternative M easur es of
"Impact” of aVariable, or Group of
Variables

Added Variance

Yll.GD (> XliYi + b12 = XziYi) == (Xli ? b12 = X2i )Yi == el_ziYi

Separate out the second term in (11.5) and substitute (11.6):

by12Y=>XaYi ? b12 = XzYiP _ byi2=>e1aYi

Y11.7p > .
=i =i

Define:

=>e1aYi 5 S, _ by, 5 =ewnYi o,

> y? 2, =y 2 2
y.l S1.2 y.l S1.2

b
= L22 6 bY1.2 6 S%Z

Y11.8D jY1.2 = bY1.2

S
2
K
>y
Divide (3.1) by ¢, where Sy = | —or-
) Y: by.,Xsi | Dy, Xoi | eqy
Y11.9p L = Y12 4 Y21 + L.l
Sy S S S
>z
multiply by <%, where Sy = | -
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’ Yi by,,Sa Xi . Dy Xoi Xoi . 1o
11.11 _ = Y12 1i 4 Myas 2 4 Eoi
A Sy S S« S Se S

So the beta coefficients are coefficients in aregression where each
variable is divided by its standard deviation and describe how aone
standared change in say x, causes amagnitude changein Y measured
in standard deviations.

Partia r

By analogy from (4.12), R:

v =2, 2
f b Yy.2pV1.2p by,, =e, by, , _852,
Comparison:
V11.13p r = byl'zsy_z
2
‘/a = byl-z%; B)/1.2 = byu%; By1_2 =Ty, —%5
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